
Bash Reference Manual
Reference Documentation for Bash
Edition 5.0, for Bash Version 5.0.

March 2018

Chet Ramey, Case Western Reserve University
Brian Fox, Free Software Foundation

This text is a brief description of the features that are present in the Bash shell (version
5.0, 15 March 2018).

This is Edition 5.0, last updated 15 March 2018, of The GNU Bash Reference Manual, for
Bash, Version 5.0.

Copyright c© 1988–2018 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Introduction . 1
1.1 What is Bash? . 1
1.2 What is a shell? . 1

2 Definitions . 3

3 Basic Shell Features . 5
3.1 Shell Syntax . 5

3.1.1 Shell Operation . 5
3.1.2 Quoting . 6

3.1.2.1 Escape Character . 6
3.1.2.2 Single Quotes . 6
3.1.2.3 Double Quotes . 6
3.1.2.4 ANSI-C Quoting . 6
3.1.2.5 Locale-Specific Translation . 7

3.1.3 Comments . 7
3.2 Shell Commands . 8

3.2.1 Simple Commands . 8
3.2.2 Pipelines . 8
3.2.3 Lists of Commands . 9
3.2.4 Compound Commands . 9

3.2.4.1 Looping Constructs . 10
3.2.4.2 Conditional Constructs . 11
3.2.4.3 Grouping Commands . 14

3.2.5 Coprocesses . 15
3.2.6 GNU Parallel . 16

3.3 Shell Functions . 17
3.4 Shell Parameters . 19

3.4.1 Positional Parameters . 20
3.4.2 Special Parameters . 21

3.5 Shell Expansions . 22
3.5.1 Brace Expansion . 22
3.5.2 Tilde Expansion . 23
3.5.3 Shell Parameter Expansion . 24
3.5.4 Command Substitution . 30
3.5.5 Arithmetic Expansion . 30
3.5.6 Process Substitution . 30
3.5.7 Word Splitting . 31
3.5.8 Filename Expansion . 31

3.5.8.1 Pattern Matching . 32
3.5.9 Quote Removal . 33

3.6 Redirections . 33

ii

3.6.1 Redirecting Input . 35
3.6.2 Redirecting Output . 35
3.6.3 Appending Redirected Output . 35
3.6.4 Redirecting Standard Output and Standard Error 35
3.6.5 Appending Standard Output and Standard Error 36
3.6.6 Here Documents . 36
3.6.7 Here Strings . 36
3.6.8 Duplicating File Descriptors . 36
3.6.9 Moving File Descriptors . 37
3.6.10 Opening File Descriptors for Reading and Writing 37

3.7 Executing Commands . 37
3.7.1 Simple Command Expansion . 37
3.7.2 Command Search and Execution . 38
3.7.3 Command Execution Environment . 38
3.7.4 Environment . 39
3.7.5 Exit Status . 40
3.7.6 Signals . 40

3.8 Shell Scripts . 41

4 Shell Builtin Commands . 43
4.1 Bourne Shell Builtins . 43
4.2 Bash Builtin Commands . 50
4.3 Modifying Shell Behavior . 61

4.3.1 The Set Builtin . 61
4.3.2 The Shopt Builtin . 65

4.4 Special Builtins . 71

5 Shell Variables . 72
5.1 Bourne Shell Variables . 72
5.2 Bash Variables . 72

6 Bash Features . 84
6.1 Invoking Bash . 84
6.2 Bash Startup Files . 86
6.3 Interactive Shells . 87

6.3.1 What is an Interactive Shell? . 88
6.3.2 Is this Shell Interactive? . 88
6.3.3 Interactive Shell Behavior . 88

6.4 Bash Conditional Expressions . 89
6.5 Shell Arithmetic . 91
6.6 Aliases . 92
6.7 Arrays . 93
6.8 The Directory Stack . 95

6.8.1 Directory Stack Builtins . 95
6.9 Controlling the Prompt . 96
6.10 The Restricted Shell . 97
6.11 Bash POSIX Mode . 98

iii

7 Job Control . 102
7.1 Job Control Basics . 102
7.2 Job Control Builtins . 103
7.3 Job Control Variables . 105

8 Command Line Editing . 106
8.1 Introduction to Line Editing . 106
8.2 Readline Interaction . 106

8.2.1 Readline Bare Essentials . 107
8.2.2 Readline Movement Commands . 107
8.2.3 Readline Killing Commands . 108
8.2.4 Readline Arguments . 108
8.2.5 Searching for Commands in the History 108

8.3 Readline Init File . 109
8.3.1 Readline Init File Syntax . 109
8.3.2 Conditional Init Constructs . 117
8.3.3 Sample Init File . 118

8.4 Bindable Readline Commands . 121
8.4.1 Commands For Moving . 121
8.4.2 Commands For Manipulating The History 122
8.4.3 Commands For Changing Text . 123
8.4.4 Killing And Yanking . 125
8.4.5 Specifying Numeric Arguments . 126
8.4.6 Letting Readline Type For You . 126
8.4.7 Keyboard Macros . 128
8.4.8 Some Miscellaneous Commands . 128

8.5 Readline vi Mode . 130
8.6 Programmable Completion . 131
8.7 Programmable Completion Builtins . 133
8.8 A Programmable Completion Example . 137

9 Using History Interactively 140
9.1 Bash History Facilities . 140
9.2 Bash History Builtins . 140
9.3 History Expansion . 142

9.3.1 Event Designators . 143
9.3.2 Word Designators . 143
9.3.3 Modifiers . 144

iv

10 Installing Bash . 145
10.1 Basic Installation . 145
10.2 Compilers and Options . 146
10.3 Compiling For Multiple Architectures . 146
10.4 Installation Names . 146
10.5 Specifying the System Type . 147
10.6 Sharing Defaults . 147
10.7 Operation Controls . 147
10.8 Optional Features . 148

Appendix A Reporting Bugs 153

Appendix B Major Differences From
The Bourne Shell . 154
B.1 Implementation Differences From The SVR4.2 Shell 158

Appendix C GNU Free Documentation License . . 160

Appendix D Indexes . 168
D.1 Index of Shell Builtin Commands . 168
D.2 Index of Shell Reserved Words . 169
D.3 Parameter and Variable Index . 170
D.4 Function Index . 172
D.5 Concept Index . 174

1

1 Introduction

1.1 What is Bash?

Bash is the shell, or command language interpreter, for the gnu operating system. The
name is an acronym for the ‘Bourne-Again SHell’, a pun on Stephen Bourne, the author
of the direct ancestor of the current Unix shell sh, which appeared in the Seventh Edition
Bell Labs Research version of Unix.

Bash is largely compatible with sh and incorporates useful features from the Korn shell
ksh and the C shell csh. It is intended to be a conformant implementation of the ieee
posix Shell and Tools portion of the ieee posix specification (ieee Standard 1003.1). It
offers functional improvements over sh for both interactive and programming use.

While the gnu operating system provides other shells, including a version of csh, Bash
is the default shell. Like other gnu software, Bash is quite portable. It currently runs on
nearly every version of Unix and a few other operating systems − independently-supported
ports exist for ms-dos, os/2, and Windows platforms.

1.2 What is a shell?

At its base, a shell is simply a macro processor that executes commands. The term macro
processor means functionality where text and symbols are expanded to create larger expres-
sions.

A Unix shell is both a command interpreter and a programming language. As a com-
mand interpreter, the shell provides the user interface to the rich set of gnu utilities. The
programming language features allow these utilities to be combined. Files containing com-
mands can be created, and become commands themselves. These new commands have the
same status as system commands in directories such as /bin, allowing users or groups to
establish custom environments to automate their common tasks.

Shells may be used interactively or non-interactively. In interactive mode, they accept
input typed from the keyboard. When executing non-interactively, shells execute commands
read from a file.

A shell allows execution of gnu commands, both synchronously and asynchronously.
The shell waits for synchronous commands to complete before accepting more input; asyn-
chronous commands continue to execute in parallel with the shell while it reads and executes
additional commands. The redirection constructs permit fine-grained control of the input
and output of those commands. Moreover, the shell allows control over the contents of
commands’ environments.

Shells also provide a small set of built-in commands (builtins) implementing function-
ality impossible or inconvenient to obtain via separate utilities. For example, cd, break,
continue, and exec cannot be implemented outside of the shell because they directly ma-
nipulate the shell itself. The history, getopts, kill, or pwd builtins, among others, could
be implemented in separate utilities, but they are more convenient to use as builtin com-
mands. All of the shell builtins are described in subsequent sections.

While executing commands is essential, most of the power (and complexity) of shells
is due to their embedded programming languages. Like any high-level language, the shell
provides variables, flow control constructs, quoting, and functions.

Chapter 1: Introduction 2

Shells offer features geared specifically for interactive use rather than to augment the pro-
gramming language. These interactive features include job control, command line editing,
command history and aliases. Each of these features is described in this manual.

3

2 Definitions

These definitions are used throughout the remainder of this manual.

POSIX A family of open system standards based on Unix. Bash is primarily concerned
with the Shell and Utilities portion of the posix 1003.1 standard.

blank A space or tab character.

builtin A command that is implemented internally by the shell itself, rather than by
an executable program somewhere in the file system.

control operator

A token that performs a control function. It is a newline or one of the following:
‘||’, ‘&&’, ‘&’, ‘;’, ‘;;’, ‘;&’, ‘;;&’, ‘|’, ‘|&’, ‘(’, or ‘)’.

exit status

The value returned by a command to its caller. The value is restricted to eight
bits, so the maximum value is 255.

field A unit of text that is the result of one of the shell expansions. After expansion,
when executing a command, the resulting fields are used as the command name
and arguments.

filename A string of characters used to identify a file.

job A set of processes comprising a pipeline, and any processes descended from it,
that are all in the same process group.

job control

A mechanism by which users can selectively stop (suspend) and restart (resume)
execution of processes.

metacharacter

A character that, when unquoted, separates words. A metacharacter is a space,
tab, newline, or one of the following characters: ‘|’, ‘&’, ‘;’, ‘(’, ‘)’, ‘<’, or ‘>’.

name A word consisting solely of letters, numbers, and underscores, and beginning
with a letter or underscore. Names are used as shell variable and function names.
Also referred to as an identifier.

operator A control operator or a redirection operator. See Section 3.6 [Redirec-
tions], page 33, for a list of redirection operators. Operators contain at least
one unquoted metacharacter.

process group

A collection of related processes each having the same process group id.

process group ID

A unique identifier that represents a process group during its lifetime.

reserved word

A word that has a special meaning to the shell. Most reserved words introduce
shell flow control constructs, such as for and while.

Chapter 2: Definitions 4

return status

A synonym for exit status.

signal A mechanism by which a process may be notified by the kernel of an event
occurring in the system.

special builtin

A shell builtin command that has been classified as special by the posix stan-
dard.

token A sequence of characters considered a single unit by the shell. It is either a
word or an operator.

word A sequence of characters treated as a unit by the shell. Words may not include
unquoted metacharacters.

5

3 Basic Shell Features

Bash is an acronym for ‘Bourne-Again SHell’. The Bourne shell is the traditional Unix shell
originally written by Stephen Bourne. All of the Bourne shell builtin commands are available
in Bash, The rules for evaluation and quoting are taken from the posix specification for the
‘standard’ Unix shell.

This chapter briefly summarizes the shell’s ‘building blocks’: commands, control struc-
tures, shell functions, shell parameters, shell expansions, redirections, which are a way to
direct input and output from and to named files, and how the shell executes commands.

3.1 Shell Syntax

When the shell reads input, it proceeds through a sequence of operations. If the input
indicates the beginning of a comment, the shell ignores the comment symbol (‘#’), and the
rest of that line.

Otherwise, roughly speaking, the shell reads its input and divides the input into words
and operators, employing the quoting rules to select which meanings to assign various words
and characters.

The shell then parses these tokens into commands and other constructs, removes the
special meaning of certain words or characters, expands others, redirects input and output
as needed, executes the specified command, waits for the command’s exit status, and makes
that exit status available for further inspection or processing.

3.1.1 Shell Operation

The following is a brief description of the shell’s operation when it reads and executes a
command. Basically, the shell does the following:

1. Reads its input from a file (see Section 3.8 [Shell Scripts], page 41), from a string
supplied as an argument to the -c invocation option (see Section 6.1 [Invoking Bash],
page 84), or from the user’s terminal.

2. Breaks the input into words and operators, obeying the quoting rules described in
Section 3.1.2 [Quoting], page 6. These tokens are separated by metacharacters. Alias
expansion is performed by this step (see Section 6.6 [Aliases], page 92).

3. Parses the tokens into simple and compound commands (see Section 3.2 [Shell Com-
mands], page 8).

4. Performs the various shell expansions (see Section 3.5 [Shell Expansions], page 22),
breaking the expanded tokens into lists of filenames (see Section 3.5.8 [Filename Ex-
pansion], page 31) and commands and arguments.

5. Performs any necessary redirections (see Section 3.6 [Redirections], page 33) and re-
moves the redirection operators and their operands from the argument list.

6. Executes the command (see Section 3.7 [Executing Commands], page 37).

7. Optionally waits for the command to complete and collects its exit status (see
Section 3.7.5 [Exit Status], page 40).

Chapter 3: Basic Shell Features 6

3.1.2 Quoting

Quoting is used to remove the special meaning of certain characters or words to the shell.
Quoting can be used to disable special treatment for special characters, to prevent reserved
words from being recognized as such, and to prevent parameter expansion.

Each of the shell metacharacters (see Chapter 2 [Definitions], page 3) has special meaning
to the shell and must be quoted if it is to represent itself. When the command history
expansion facilities are being used (see Section 9.3 [History Interaction], page 142), the
history expansion character, usually ‘!’, must be quoted to prevent history expansion. See
Section 9.1 [Bash History Facilities], page 140, for more details concerning history expansion.

There are three quoting mechanisms: the escape character, single quotes, and double
quotes.

3.1.2.1 Escape Character

A non-quoted backslash ‘\’ is the Bash escape character. It preserves the literal value of
the next character that follows, with the exception of newline. If a \newline pair appears,
and the backslash itself is not quoted, the \newline is treated as a line continuation (that
is, it is removed from the input stream and effectively ignored).

3.1.2.2 Single Quotes

Enclosing characters in single quotes (‘’’) preserves the literal value of each character within
the quotes. A single quote may not occur between single quotes, even when preceded by a
backslash.

3.1.2.3 Double Quotes

Enclosing characters in double quotes (‘"’) preserves the literal value of all characters within
the quotes, with the exception of ‘$’, ‘‘’, ‘\’, and, when history expansion is enabled, ‘!’.
When the shell is in posix mode (see Section 6.11 [Bash POSIX Mode], page 98), the ‘!’
has no special meaning within double quotes, even when history expansion is enabled. The
characters ‘$’ and ‘‘’ retain their special meaning within double quotes (see Section 3.5
[Shell Expansions], page 22). The backslash retains its special meaning only when followed
by one of the following characters: ‘$’, ‘‘’, ‘"’, ‘\’, or newline. Within double quotes,
backslashes that are followed by one of these characters are removed. Backslashes preceding
characters without a special meaning are left unmodified. A double quote may be quoted
within double quotes by preceding it with a backslash. If enabled, history expansion will
be performed unless an ‘!’ appearing in double quotes is escaped using a backslash. The
backslash preceding the ‘!’ is not removed.

The special parameters ‘*’ and ‘@’ have special meaning when in double quotes (see
Section 3.5.3 [Shell Parameter Expansion], page 24).

3.1.2.4 ANSI-C Quoting

Words of the form $’string’ are treated specially. The word expands to string, with
backslash-escaped characters replaced as specified by the ANSI C standard. Backslash
escape sequences, if present, are decoded as follows:

\a alert (bell)

\b backspace

Chapter 3: Basic Shell Features 7

\e

\E an escape character (not ANSI C)

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\’ single quote

\" double quote

\? question mark

\nnn the eight-bit character whose value is the octal value nnn (one to three octal
digits)

\xHH the eight-bit character whose value is the hexadecimal value HH (one or two
hex digits)

\uHHHH the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value
HHHH (one to four hex digits)

\UHHHHHHHH

the Unicode (ISO/IEC 10646) character whose value is the hexadecimal value
HHHHHHHH (one to eight hex digits)

\cx a control-x character

The expanded result is single-quoted, as if the dollar sign had not been present.

3.1.2.5 Locale-Specific Translation

A double-quoted string preceded by a dollar sign (‘$’) will cause the string to be translated
according to the current locale. If the current locale is C or POSIX, the dollar sign is ignored.
If the string is translated and replaced, the replacement is double-quoted.

Some systems use the message catalog selected by the LC_MESSAGES shell variable. Others
create the name of the message catalog from the value of the TEXTDOMAIN shell variable,
possibly adding a suffix of ‘.mo’. If you use the TEXTDOMAIN variable, you may need to set
the TEXTDOMAINDIR variable to the location of the message catalog files. Still others use both
variables in this fashion: TEXTDOMAINDIR/LC_MESSAGES/LC MESSAGES/TEXTDOMAIN.mo.

3.1.3 Comments

In a non-interactive shell, or an interactive shell in which the interactive_comments option
to the shopt builtin is enabled (see Section 4.3.2 [The Shopt Builtin], page 65), a word
beginning with ‘#’ causes that word and all remaining characters on that line to be ignored.
An interactive shell without the interactive_comments option enabled does not allow
comments. The interactive_comments option is on by default in interactive shells. See
Section 6.3 [Interactive Shells], page 87, for a description of what makes a shell interactive.

Chapter 3: Basic Shell Features 8

3.2 Shell Commands

A simple shell command such as echo a b c consists of the command itself followed by
arguments, separated by spaces.

More complex shell commands are composed of simple commands arranged together in
a variety of ways: in a pipeline in which the output of one command becomes the input of
a second, in a loop or conditional construct, or in some other grouping.

3.2.1 Simple Commands

A simple command is the kind of command encountered most often. It’s just a sequence of
words separated by blanks, terminated by one of the shell’s control operators (see Chapter 2
[Definitions], page 3). The first word generally specifies a command to be executed, with
the rest of the words being that command’s arguments.

The return status (see Section 3.7.5 [Exit Status], page 40) of a simple command is its
exit status as provided by the posix 1003.1 waitpid function, or 128+n if the command
was terminated by signal n.

3.2.2 Pipelines

A pipeline is a sequence of one or more commands separated by one of the control operators
‘|’ or ‘|&’.

The format for a pipeline is

[time [-p]] [!] command1 [| or |& command2] ...

The output of each command in the pipeline is connected via a pipe to the input of the next
command. That is, each command reads the previous command’s output. This connection
is performed before any redirections specified by the command.

If ‘|&’ is used, command1’s standard error, in addition to its standard output, is con-
nected to command2’s standard input through the pipe; it is shorthand for 2>&1 |. This
implicit redirection of the standard error to the standard output is performed after any
redirections specified by the command.

The reserved word time causes timing statistics to be printed for the pipeline once it
finishes. The statistics currently consist of elapsed (wall-clock) time and user and system
time consumed by the command’s execution. The -p option changes the output format to
that specified by posix. When the shell is in posix mode (see Section 6.11 [Bash POSIX
Mode], page 98), it does not recognize time as a reserved word if the next token begins
with a ‘-’. The TIMEFORMAT variable may be set to a format string that specifies how the
timing information should be displayed. See Section 5.2 [Bash Variables], page 72, for a
description of the available formats. The use of time as a reserved word permits the timing
of shell builtins, shell functions, and pipelines. An external time command cannot time
these easily.

When the shell is in posix mode (see Section 6.11 [Bash POSIX Mode], page 98), time
may be followed by a newline. In this case, the shell displays the total user and system time
consumed by the shell and its children. The TIMEFORMAT variable may be used to specify
the format of the time information.

If the pipeline is not executed asynchronously (see Section 3.2.3 [Lists], page 9), the shell
waits for all commands in the pipeline to complete.

Chapter 3: Basic Shell Features 9

Each command in a pipeline is executed in its own subshell, which is a separate process
(see Section 3.7.3 [Command Execution Environment], page 38). If the lastpipe option is
enabled using the shopt builtin (see Section 4.3.2 [The Shopt Builtin], page 65), the last
element of a pipeline may be run by the shell process.

The exit status of a pipeline is the exit status of the last command in the pipeline, unless
the pipefail option is enabled (see Section 4.3.1 [The Set Builtin], page 61). If pipefail
is enabled, the pipeline’s return status is the value of the last (rightmost) command to exit
with a non-zero status, or zero if all commands exit successfully. If the reserved word ‘!’
precedes the pipeline, the exit status is the logical negation of the exit status as described
above. The shell waits for all commands in the pipeline to terminate before returning a
value.

3.2.3 Lists of Commands

A list is a sequence of one or more pipelines separated by one of the operators ‘;’, ‘&’,
‘&&’, or ‘||’, and optionally terminated by one of ‘;’, ‘&’, or a newline.

Of these list operators, ‘&&’ and ‘||’ have equal precedence, followed by ‘;’ and ‘&’, which
have equal precedence.

A sequence of one or more newlines may appear in a list to delimit commands, equiv-
alent to a semicolon.

If a command is terminated by the control operator ‘&’, the shell executes the command
asynchronously in a subshell. This is known as executing the command in the background.
The shell does not wait for the command to finish, and the return status is 0 (true). When
job control is not active (see Chapter 7 [Job Control], page 102), the standard input for
asynchronous commands, in the absence of any explicit redirections, is redirected from
/dev/null.

Commands separated by a ‘;’ are executed sequentially; the shell waits for each command
to terminate in turn. The return status is the exit status of the last command executed.

and and or lists are sequences of one or more pipelines separated by the control oper-
ators ‘&&’ and ‘||’, respectively. and and or lists are executed with left associativity.

An and list has the form

command1 && command2

command2 is executed if, and only if, command1 returns an exit status of zero (success).

An or list has the form

command1 || command2

command2 is executed if, and only if, command1 returns a non-zero exit status.

The return status of and and or lists is the exit status of the last command executed
in the list.

3.2.4 Compound Commands

Compound commands are the shell programming language constructs. Each construct be-
gins with a reserved word or control operator and is terminated by a corresponding reserved
word or operator. Any redirections (see Section 3.6 [Redirections], page 33) associated with
a compound command apply to all commands within that compound command unless ex-
plicitly overridden.

Chapter 3: Basic Shell Features 10

In most cases a list of commands in a compound command’s description may be separated
from the rest of the command by one or more newlines, and may be followed by a newline
in place of a semicolon.

Bash provides looping constructs, conditional commands, and mechanisms to group
commands and execute them as a unit.

3.2.4.1 Looping Constructs

Bash supports the following looping constructs.

Note that wherever a ‘;’ appears in the description of a command’s syntax, it may be
replaced with one or more newlines.

until The syntax of the until command is:

until test-commands; do consequent-commands; done

Execute consequent-commands as long as test-commands has an exit status
which is not zero. The return status is the exit status of the last command
executed in consequent-commands, or zero if none was executed.

while The syntax of the while command is:

while test-commands; do consequent-commands; done

Execute consequent-commands as long as test-commands has an exit status
of zero. The return status is the exit status of the last command executed in
consequent-commands, or zero if none was executed.

for The syntax of the for command is:

for name [[in [words ...]] ;] do commands; done

Expand words (see Section 3.5 [Shell Expansions], page 22), and execute com-
mands once for each member in the resultant list, with name bound to the
current member. If ‘in words’ is not present, the for command executes the
commands once for each positional parameter that is set, as if ‘in "$@"’ had
been specified (see Section 3.4.2 [Special Parameters], page 21).

The return status is the exit status of the last command that executes. If there
are no items in the expansion of words, no commands are executed, and the
return status is zero.

An alternate form of the for command is also supported:

for ((expr1 ; expr2 ; expr3)) ; do commands ; done

First, the arithmetic expression expr1 is evaluated according to the rules de-
scribed below (see Section 6.5 [Shell Arithmetic], page 91). The arithmetic
expression expr2 is then evaluated repeatedly until it evaluates to zero. Each
time expr2 evaluates to a non-zero value, commands are executed and the arith-
metic expression expr3 is evaluated. If any expression is omitted, it behaves as
if it evaluates to 1. The return value is the exit status of the last command in
commands that is executed, or false if any of the expressions is invalid.

The break and continue builtins (see Section 4.1 [Bourne Shell Builtins], page 43) may
be used to control loop execution.

Chapter 3: Basic Shell Features 11

3.2.4.2 Conditional Constructs

if The syntax of the if command is:

if test-commands; then

consequent-commands;

[elif more-test-commands; then

more-consequents;]

[else alternate-consequents;]

fi

The test-commands list is executed, and if its return status is zero, the
consequent-commands list is executed. If test-commands returns a non-zero
status, each elif list is executed in turn, and if its exit status is zero, the
corresponding more-consequents is executed and the command completes. If
‘else alternate-consequents’ is present, and the final command in the final
if or elif clause has a non-zero exit status, then alternate-consequents is
executed. The return status is the exit status of the last command executed,
or zero if no condition tested true.

case The syntax of the case command is:

case word in [[(] pattern [| pattern]...) command-list ;;]... esac

case will selectively execute the command-list corresponding to the first pattern
that matches word. The match is performed according to the rules described be-
low in Section 3.5.8.1 [Pattern Matching], page 32. If the nocasematch shell op-
tion (see the description of shopt in Section 4.3.2 [The Shopt Builtin], page 65)
is enabled, the match is performed without regard to the case of alphabetic
characters. The ‘|’ is used to separate multiple patterns, and the ‘)’ operator
terminates a pattern list. A list of patterns and an associated command-list is
known as a clause.

Each clause must be terminated with ‘;;’, ‘;&’, or ‘;;&’. The word under-
goes tilde expansion, parameter expansion, command substitution, arithmetic
expansion, and quote removal (see Section 3.5.3 [Shell Parameter Expansion],
page 24) before matching is attempted. Each pattern undergoes tilde expansion,
parameter expansion, command substitution, and arithmetic expansion.

There may be an arbitrary number of case clauses, each terminated by a ‘;;’,
‘;&’, or ‘;;&’. The first pattern that matches determines the command-list that
is executed. It’s a common idiom to use ‘*’ as the final pattern to define the
default case, since that pattern will always match.

Here is an example using case in a script that could be used to describe one
interesting feature of an animal:

echo -n "Enter the name of an animal: "

read ANIMAL

echo -n "The $ANIMAL has "

case $ANIMAL in

horse | dog | cat) echo -n "four";;

man | kangaroo) echo -n "two";;

*) echo -n "an unknown number of";;

Chapter 3: Basic Shell Features 12

esac

echo " legs."

If the ‘;;’ operator is used, no subsequent matches are attempted after the first
pattern match. Using ‘;&’ in place of ‘;;’ causes execution to continue with the
command-list associated with the next clause, if any. Using ‘;;&’ in place of
‘;;’ causes the shell to test the patterns in the next clause, if any, and execute
any associated command-list on a successful match.

The return status is zero if no pattern is matched. Otherwise, the return status
is the exit status of the command-list executed.

select

The select construct allows the easy generation of menus. It has almost the
same syntax as the for command:

select name [in words ...]; do commands; done

The list of words following in is expanded, generating a list of items. The set of
expanded words is printed on the standard error output stream, each preceded
by a number. If the ‘in words’ is omitted, the positional parameters are printed,
as if ‘in "$@"’ had been specified. The PS3 prompt is then displayed and a line
is read from the standard input. If the line consists of a number corresponding
to one of the displayed words, then the value of name is set to that word. If
the line is empty, the words and prompt are displayed again. If EOF is read,
the select command completes. Any other value read causes name to be set
to null. The line read is saved in the variable REPLY.

The commands are executed after each selection until a break command is
executed, at which point the select command completes.

Here is an example that allows the user to pick a filename from the current
directory, and displays the name and index of the file selected.

select fname in *;

do

echo you picked $fname \($REPLY\)

break;

done

((...))

((expression))

The arithmetic expression is evaluated according to the rules described below
(see Section 6.5 [Shell Arithmetic], page 91). If the value of the expression is
non-zero, the return status is 0; otherwise the return status is 1. This is exactly
equivalent to

let "expression"

See Section 4.2 [Bash Builtins], page 50, for a full description of the let builtin.

[[...]]

[[expression]]

Return a status of 0 or 1 depending on the evaluation of the conditional expres-
sion expression. Expressions are composed of the primaries described below in

Chapter 3: Basic Shell Features 13

Section 6.4 [Bash Conditional Expressions], page 89. Word splitting and file-
name expansion are not performed on the words between the [[and]]; tilde
expansion, parameter and variable expansion, arithmetic expansion, command
substitution, process substitution, and quote removal are performed. Condi-
tional operators such as ‘-f’ must be unquoted to be recognized as primaries.

When used with [[, the ‘<’ and ‘>’ operators sort lexicographically using the
current locale.

When the ‘==’ and ‘!=’ operators are used, the string to the right of the operator
is considered a pattern and matched according to the rules described below in
Section 3.5.8.1 [Pattern Matching], page 32, as if the extglob shell option were
enabled. The ‘=’ operator is identical to ‘==’. If the nocasematch shell option
(see the description of shopt in Section 4.3.2 [The Shopt Builtin], page 65)
is enabled, the match is performed without regard to the case of alphabetic
characters. The return value is 0 if the string matches (‘==’) or does not match
(‘!=’)the pattern, and 1 otherwise. Any part of the pattern may be quoted to
force the quoted portion to be matched as a string.

An additional binary operator, ‘=~’, is available, with the same precedence as
‘==’ and ‘!=’. When it is used, the string to the right of the operator is consid-
ered an extended regular expression and matched accordingly (as in regex3)).
The return value is 0 if the string matches the pattern, and 1 otherwise. If the
regular expression is syntactically incorrect, the conditional expression’s return
value is 2. If the nocasematch shell option (see the description of shopt in
Section 4.3.2 [The Shopt Builtin], page 65) is enabled, the match is performed
without regard to the case of alphabetic characters. Any part of the pattern
may be quoted to force the quoted portion to be matched as a string. Bracket
expressions in regular expressions must be treated carefully, since normal quot-
ing characters lose their meanings between brackets. If the pattern is stored
in a shell variable, quoting the variable expansion forces the entire pattern to
be matched as a string. Substrings matched by parenthesized subexpressions
within the regular expression are saved in the array variable BASH_REMATCH.
The element of BASH_REMATCH with index 0 is the portion of the string match-
ing the entire regular expression. The element of BASH_REMATCH with index n
is the portion of the string matching the nth parenthesized subexpression.

For example, the following will match a line (stored in the shell variable line) if
there is a sequence of characters in the value consisting of any number, including
zero, of space characters, zero or one instances of ‘a’, then a ‘b’:

[[$line =~ [[:space:]]*?(a)b]]

That means values like ‘aab’ and ‘ aaaaaab’ will match, as will a line containing
a ‘b’ anywhere in its value.

Storing the regular expression in a shell variable is often a useful way to avoid
problems with quoting characters that are special to the shell. It is sometimes
difficult to specify a regular expression literally without using quotes, or to keep
track of the quoting used by regular expressions while paying attention to the
shell’s quote removal. Using a shell variable to store the pattern decreases these
problems. For example, the following is equivalent to the above:

Chapter 3: Basic Shell Features 14

pattern=’[[:space:]]*?(a)b’

[[$line =~ $pattern]]

If you want to match a character that’s special to the regular expression gram-
mar, it has to be quoted to remove its special meaning. This means that in the
pattern ‘xxx.txt’, the ‘.’ matches any character in the string (its usual regular
expression meaning), but in the pattern ‘"xxx.txt"’ it can only match a literal
‘.’. Shell programmers should take special care with backslashes, since back-
slashes are used both by the shell and regular expressions to remove the special
meaning from the following character. The following two sets of commands are
not equivalent:

pattern=’\.’

[[. =~ $pattern]]

[[. =~ \.]]

[[. =~ "$pattern"]]

[[. =~ ’\.’]]

The first two matches will succeed, but the second two will not, because in the
second two the backslash will be part of the pattern to be matched. In the
first two examples, the backslash removes the special meaning from ‘.’, so the
literal ‘.’ matches. If the string in the first examples were anything other than
‘.’, say ‘a’, the pattern would not match, because the quoted ‘.’ in the pattern
loses its special meaning of matching any single character.

Expressions may be combined using the following operators, listed in decreasing
order of precedence:

(expression)

Returns the value of expression. This may be used to override the
normal precedence of operators.

! expression

True if expression is false.

expression1 && expression2

True if both expression1 and expression2 are true.

expression1 || expression2

True if either expression1 or expression2 is true.

The && and || operators do not evaluate expression2 if the value of expression1
is sufficient to determine the return value of the entire conditional expression.

3.2.4.3 Grouping Commands

Bash provides two ways to group a list of commands to be executed as a unit. When com-
mands are grouped, redirections may be applied to the entire command list. For example,
the output of all the commands in the list may be redirected to a single stream.

()

(list)

Chapter 3: Basic Shell Features 15

Placing a list of commands between parentheses causes a subshell environment
to be created (see Section 3.7.3 [Command Execution Environment], page 38),
and each of the commands in list to be executed in that subshell. Since the list
is executed in a subshell, variable assignments do not remain in effect after the
subshell completes.

{}

{ list; }

Placing a list of commands between curly braces causes the list to be executed
in the current shell context. No subshell is created. The semicolon (or newline)
following list is required.

In addition to the creation of a subshell, there is a subtle difference between these
two constructs due to historical reasons. The braces are reserved words, so they must
be separated from the list by blanks or other shell metacharacters. The parentheses are
operators, and are recognized as separate tokens by the shell even if they are not separated
from the list by whitespace.

The exit status of both of these constructs is the exit status of list.

3.2.5 Coprocesses

A coprocess is a shell command preceded by the coproc reserved word. A coprocess is
executed asynchronously in a subshell, as if the command had been terminated with the
‘&’ control operator, with a two-way pipe established between the executing shell and the
coprocess.

The format for a coprocess is:

coproc [NAME] command [redirections]

This creates a coprocess named NAME. If NAME is not supplied, the default name is
COPROC. NAME must not be supplied if command is a simple command (see Section 3.2.1
[Simple Commands], page 8); otherwise, it is interpreted as the first word of the simple
command.

When the coprocess is executed, the shell creates an array variable (see Section 6.7
[Arrays], page 93) named NAME in the context of the executing shell. The standard output
of command is connected via a pipe to a file descriptor in the executing shell, and that
file descriptor is assigned to NAME[0]. The standard input of command is connected via
a pipe to a file descriptor in the executing shell, and that file descriptor is assigned to
NAME[1]. This pipe is established before any redirections specified by the command (see
Section 3.6 [Redirections], page 33). The file descriptors can be utilized as arguments
to shell commands and redirections using standard word expansions. Other than those
created to execute command and process substitutions, the file descriptors are not available
in subshells.

The process ID of the shell spawned to execute the coprocess is available as the value of
the variable NAME PID. The wait builtin command may be used to wait for the coprocess
to terminate.

Since the coprocess is created as an asynchronous command, the coproc command always
returns success. The return status of a coprocess is the exit status of command.

Chapter 3: Basic Shell Features 16

3.2.6 GNU Parallel

There are ways to run commands in parallel that are not built into Bash. GNU Parallel is
a tool to do just that.

GNU Parallel, as its name suggests, can be used to build and run commands in parallel.
You may run the same command with different arguments, whether they are filenames,
usernames, hostnames, or lines read from files. GNU Parallel provides shorthand references
to many of the most common operations (input lines, various portions of the input line,
different ways to specify the input source, and so on). Parallel can replace xargs or feed
commands from its input sources to several different instances of Bash.

For a complete description, refer to the GNU Parallel documentation. A few examples
should provide a brief introduction to its use.

For example, it is easy to replace xargs to gzip all html files in the current directory
and its subdirectories:

find . -type f -name ’*.html’ -print | parallel gzip

If you need to protect special characters such as newlines in file names, use find’s -print0
option and parallel’s -0 option.

You can use Parallel to move files from the current directory when the number of files
is too large to process with one mv invocation:

ls | parallel mv {} destdir

As you can see, the {} is replaced with each line read from standard input. While using
ls will work in most instances, it is not sufficient to deal with all filenames. If you need to
accommodate special characters in filenames, you can use

find . -depth 1 \! -name ’.*’ -print0 | parallel -0 mv {} destdir

as alluded to above.

This will run as many mv commands as there are files in the current directory. You can
emulate a parallel xargs by adding the -X option:

find . -depth 1 \! -name ’.*’ -print0 | parallel -0 -X mv {} destdir

GNU Parallel can replace certain common idioms that operate on lines read from a file
(in this case, filenames listed one per line):

while IFS= read -r x; do

do-something1 "$x" "config-$x"

do-something2 < "$x"

done < file | process-output

with a more compact syntax reminiscent of lambdas:

cat list | parallel "do-something1 {} config-{} ; do-something2 < {}" | process-output

Parallel provides a built-in mechanism to remove filename extensions, which lends itself
to batch file transformations or renaming:

ls *.gz | parallel -j+0 "zcat {} | bzip2 >{.}.bz2 && rm {}"

This will recompress all files in the current directory with names ending in .gz using bzip2,
running one job per CPU (-j+0) in parallel. (We use ls for brevity here; using find as
above is more robust in the face of filenames containing unexpected characters.) Parallel
can take arguments from the command line; the above can also be written as

parallel "zcat {} | bzip2 >{.}.bz2 && rm {}" ::: *.gz

Chapter 3: Basic Shell Features 17

If a command generates output, you may want to preserve the input order in the output.
For instance, the following command

{ echo foss.org.my ; echo debian.org; echo freenetproject.org; } | parallel traceroute

will display as output the traceroute invocation that finishes first. Adding the -k option

{ echo foss.org.my ; echo debian.org; echo freenetproject.org; } | parallel -k traceroute

will ensure that the output of traceroute foss.org.my is displayed first.

Finally, Parallel can be used to run a sequence of shell commands in parallel, similar to
‘cat file | bash’. It is not uncommon to take a list of filenames, create a series of shell
commands to operate on them, and feed that list of commands to a shell. Parallel can speed
this up. Assuming that file contains a list of shell commands, one per line,

parallel -j 10 < file

will evaluate the commands using the shell (since no explicit command is supplied as an
argument), in blocks of ten shell jobs at a time.

3.3 Shell Functions

Shell functions are a way to group commands for later execution using a single name for
the group. They are executed just like a "regular" command. When the name of a shell
function is used as a simple command name, the list of commands associated with that
function name is executed. Shell functions are executed in the current shell context; no new
process is created to interpret them.

Functions are declared using this syntax:

name () compound-command [redirections]

or

function name [()] compound-command [redirections]

This defines a shell function named name. The reserved word function is optional. If
the function reserved word is supplied, the parentheses are optional. The body of the
function is the compound command compound-command (see Section 3.2.4 [Compound
Commands], page 9). That command is usually a list enclosed between { and }, but may
be any compound command listed above, with one exception: If the function reserved
word is used, but the parentheses are not supplied, the braces are required. compound-
command is executed whenever name is specified as the name of a command. When the
shell is in posix mode (see Section 6.11 [Bash POSIX Mode], page 98), name may not be
the same as one of the special builtins (see Section 4.4 [Special Builtins], page 71). Any
redirections (see Section 3.6 [Redirections], page 33) associated with the shell function are
performed when the function is executed.

A function definition may be deleted using the -f option to the unset builtin (see
Section 4.1 [Bourne Shell Builtins], page 43).

The exit status of a function definition is zero unless a syntax error occurs or a readonly
function with the same name already exists. When executed, the exit status of a function
is the exit status of the last command executed in the body.

Note that for historical reasons, in the most common usage the curly braces that surround
the body of the function must be separated from the body by blanks or newlines. This
is because the braces are reserved words and are only recognized as such when they are

Chapter 3: Basic Shell Features 18

separated from the command list by whitespace or another shell metacharacter. Also, when
using the braces, the list must be terminated by a semicolon, a ‘&’, or a newline.

When a function is executed, the arguments to the function become the positional pa-
rameters during its execution (see Section 3.4.1 [Positional Parameters], page 20). The
special parameter ‘#’ that expands to the number of positional parameters is updated to
reflect the change. Special parameter 0 is unchanged. The first element of the FUNCNAME

variable is set to the name of the function while the function is executing.

All other aspects of the shell execution environment are identical between a function and
its caller with these exceptions: the DEBUG and RETURN traps are not inherited unless the
function has been given the trace attribute using the declare builtin or the -o functrace

option has been enabled with the set builtin, (in which case all functions inherit the DEBUG
and RETURN traps), and the ERR trap is not inherited unless the -o errtrace shell option
has been enabled. See Section 4.1 [Bourne Shell Builtins], page 43, for the description of
the trap builtin.

The FUNCNEST variable, if set to a numeric value greater than 0, defines a maximum
function nesting level. Function invocations that exceed the limit cause the entire command
to abort.

If the builtin command return is executed in a function, the function completes and
execution resumes with the next command after the function call. Any command associated
with the RETURN trap is executed before execution resumes. When a function completes,
the values of the positional parameters and the special parameter ‘#’ are restored to the
values they had prior to the function’s execution. If a numeric argument is given to return,
that is the function’s return status; otherwise the function’s return status is the exit status
of the last command executed before the return.

Variables local to the function may be declared with the local builtin. These variables
are visible only to the function and the commands it invokes. This is particularly important
when a shell function calls other functions.

Local variables "shadow" variables with the same name declared at previous scopes.
For instance, a local variable declared in a function hides a global variable of the same
name: references and assignments refer to the local variable, leaving the global variable
unmodified. When the function returns, the global variable is once again visible.

The shell uses dynamic scoping to control a variable’s visibility within functions. With
dynamic scoping, visible variables and their values are a result of the sequence of function
calls that caused execution to reach the current function. The value of a variable that a
function sees depends on its value within its caller, if any, whether that caller is the "global"
scope or another shell function. This is also the value that a local variable declaration
"shadows", and the value that is restored when the function returns.

For example, if a variable var is declared as local in function func1, and func1 calls
another function func2, references to var made from within func2 will resolve to the local
variable var from func1, shadowing any global variable named var.

The following script demonstrates this behavior. When executed, the script displays

In func2, var = func1 local

func1()

{

Chapter 3: Basic Shell Features 19

local var=’func1 local’

func2

}

func2()

{

echo "In func2, var = $var"

}

var=global

func1

The unset builtin also acts using the same dynamic scope: if a variable is local to the
current scope, unset will unset it; otherwise the unset will refer to the variable found in
any calling scope as described above. If a variable at the current local scope is unset, it
will remain so until it is reset in that scope or until the function returns. Once the function
returns, any instance of the variable at a previous scope will become visible. If the unset
acts on a variable at a previous scope, any instance of a variable with that name that had
been shadowed will become visible.

Function names and definitions may be listed with the -f option to the declare

(typeset) builtin command (see Section 4.2 [Bash Builtins], page 50). The -F option to
declare or typeset will list the function names only (and optionally the source file and
line number, if the extdebug shell option is enabled). Functions may be exported so that
subshells automatically have them defined with the -f option to the export builtin (see
Section 4.1 [Bourne Shell Builtins], page 43).

Functions may be recursive. The FUNCNEST variable may be used to limit the depth of
the function call stack and restrict the number of function invocations. By default, no limit
is placed on the number of recursive calls.

3.4 Shell Parameters

A parameter is an entity that stores values. It can be a name, a number, or one of the special
characters listed below. A variable is a parameter denoted by a name. A variable has a value
and zero or more attributes. Attributes are assigned using the declare builtin command
(see the description of the declare builtin in Section 4.2 [Bash Builtins], page 50).

A parameter is set if it has been assigned a value. The null string is a valid value. Once
a variable is set, it may be unset only by using the unset builtin command.

A variable may be assigned to by a statement of the form

name=[value]

If value is not given, the variable is assigned the null string. All values undergo tilde ex-
pansion, parameter and variable expansion, command substitution, arithmetic expansion,
and quote removal (detailed below). If the variable has its integer attribute set, then
value is evaluated as an arithmetic expression even if the $((...)) expansion is not used
(see Section 3.5.5 [Arithmetic Expansion], page 30). Word splitting is not performed, with
the exception of "$@" as explained below. Filename expansion is not performed. Assign-
ment statements may also appear as arguments to the alias, declare, typeset, export,
readonly, and local builtin commands (declaration commands). When in posix mode

Chapter 3: Basic Shell Features 20

(see Section 6.11 [Bash POSIX Mode], page 98), these builtins may appear in a command
after one or more instances of the command builtin and retain these assignment statement
properties.

In the context where an assignment statement is assigning a value to a shell variable or
array index (see Section 6.7 [Arrays], page 93), the ‘+=’ operator can be used to append to or
add to the variable’s previous value. This includes arguments to builtin commands such as
declare that accept assignment statements (declaration commands). When ‘+=’ is applied
to a variable for which the integer attribute has been set, value is evaluated as an arithmetic
expression and added to the variable’s current value, which is also evaluated. When ‘+=’ is
applied to an array variable using compound assignment (see Section 6.7 [Arrays], page 93),
the variable’s value is not unset (as it is when using ‘=’), and new values are appended to
the array beginning at one greater than the array’s maximum index (for indexed arrays), or
added as additional key-value pairs in an associative array. When applied to a string-valued
variable, value is expanded and appended to the variable’s value.

A variable can be assigned the nameref attribute using the -n option to the declare or
local builtin commands (see Section 4.2 [Bash Builtins], page 50) to create a nameref, or a
reference to another variable. This allows variables to be manipulated indirectly. Whenever
the nameref variable is referenced, assigned to, unset, or has its attributes modified (other
than using or changing the nameref attribute itself), the operation is actually performed on
the variable specified by the nameref variable’s value. A nameref is commonly used within
shell functions to refer to a variable whose name is passed as an argument to the function.
For instance, if a variable name is passed to a shell function as its first argument, running

declare -n ref=$1

inside the function creates a nameref variable ref whose value is the variable name passed
as the first argument. References and assignments to ref, and changes to its attributes, are
treated as references, assignments, and attribute modifications to the variable whose name
was passed as $1.

If the control variable in a for loop has the nameref attribute, the list of words can be
a list of shell variables, and a name reference will be established for each word in the list,
in turn, when the loop is executed. Array variables cannot be given the nameref attribute.
However, nameref variables can reference array variables and subscripted array variables.
Namerefs can be unset using the -n option to the unset builtin (see Section 4.1 [Bourne
Shell Builtins], page 43). Otherwise, if unset is executed with the name of a nameref
variable as an argument, the variable referenced by the nameref variable will be unset.

3.4.1 Positional Parameters

A positional parameter is a parameter denoted by one or more digits, other than the single
digit 0. Positional parameters are assigned from the shell’s arguments when it is invoked,
and may be reassigned using the set builtin command. Positional parameter N may be
referenced as ${N}, or as $N when N consists of a single digit. Positional parameters may
not be assigned to with assignment statements. The set and shift builtins are used to
set and unset them (see Chapter 4 [Shell Builtin Commands], page 43). The positional
parameters are temporarily replaced when a shell function is executed (see Section 3.3
[Shell Functions], page 17).

When a positional parameter consisting of more than a single digit is expanded, it must
be enclosed in braces.

Chapter 3: Basic Shell Features 21

3.4.2 Special Parameters

The shell treats several parameters specially. These parameters may only be referenced;
assignment to them is not allowed.

* ($*) Expands to the positional parameters, starting from one. When the ex-
pansion is not within double quotes, each positional parameter expands to a
separate word. In contexts where it is performed, those words are subject to
further word splitting and pathname expansion. When the expansion occurs
within double quotes, it expands to a single word with the value of each param-
eter separated by the first character of the IFS special variable. That is, "$*"
is equivalent to "$1c$2c...", where c is the first character of the value of the
IFS variable. If IFS is unset, the parameters are separated by spaces. If IFS is
null, the parameters are joined without intervening separators.

@ ($@) Expands to the positional parameters, starting from one. When the ex-
pansion occurs within double quotes, each parameter expands to a separate
word. That is, "$@" is equivalent to "$1" "$2" If the double-quoted ex-
pansion occurs within a word, the expansion of the first parameter is joined
with the beginning part of the original word, and the expansion of the last
parameter is joined with the last part of the original word. When there are no
positional parameters, "$@" and $@ expand to nothing (i.e., they are removed).

($#) Expands to the number of positional parameters in decimal.

? ($?) Expands to the exit status of the most recently executed foreground
pipeline.

- ($-, a hyphen.) Expands to the current option flags as specified upon invocation,
by the set builtin command, or those set by the shell itself (such as the -i

option).

$ ($$) Expands to the process id of the shell. In a () subshell, it expands to the
process id of the invoking shell, not the subshell.

! ($!) Expands to the process id of the job most recently placed into the back-
ground, whether executed as an asynchronous command or using the bg builtin
(see Section 7.2 [Job Control Builtins], page 103).

0 ($0) Expands to the name of the shell or shell script. This is set at shell
initialization. If Bash is invoked with a file of commands (see Section 3.8 [Shell
Scripts], page 41), $0 is set to the name of that file. If Bash is started with the
-c option (see Section 6.1 [Invoking Bash], page 84), then $0 is set to the first
argument after the string to be executed, if one is present. Otherwise, it is set
to the filename used to invoke Bash, as given by argument zero.

_ ($, an underscore.) At shell startup, set to the absolute pathname used to
invoke the shell or shell script being executed as passed in the environment
or argument list. Subsequently, expands to the last argument to the previous
command, after expansion. Also set to the full pathname used to invoke each
command executed and placed in the environment exported to that command.
When checking mail, this parameter holds the name of the mail file.

Chapter 3: Basic Shell Features 22

3.5 Shell Expansions

Expansion is performed on the command line after it has been split into tokens. There are
seven kinds of expansion performed:

• brace expansion

• tilde expansion

• parameter and variable expansion

• command substitution

• arithmetic expansion

• word splitting

• filename expansion

The order of expansions is: brace expansion; tilde expansion, parameter and variable ex-
pansion, arithmetic expansion, and command substitution (done in a left-to-right fashion);
word splitting; and filename expansion.

On systems that can support it, there is an additional expansion available: process
substitution. This is performed at the same time as tilde, parameter, variable, and arith-
metic expansion and command substitution.

After these expansions are performed, quote characters present in the original word are
removed unless they have been quoted themselves (quote removal).

Only brace expansion, word splitting, and filename expansion can increase the number
of words of the expansion; other expansions expand a single word to a single word. The only
exceptions to this are the expansions of "$@" and $* (see Section 3.4.2 [Special Parameters],
page 21), and "${name[@]}" and ${name[*]} (see Section 6.7 [Arrays], page 93).

After all expansions, quote removal (see Section 3.5.9 [Quote Removal], page 33) is
performed.

3.5.1 Brace Expansion

Brace expansion is a mechanism by which arbitrary strings may be generated. This mech-
anism is similar to filename expansion (see Section 3.5.8 [Filename Expansion], page 31),
but the filenames generated need not exist. Patterns to be brace expanded take the form of
an optional preamble, followed by either a series of comma-separated strings or a sequence
expression between a pair of braces, followed by an optional postscript. The preamble is
prefixed to each string contained within the braces, and the postscript is then appended to
each resulting string, expanding left to right.

Brace expansions may be nested. The results of each expanded string are not sorted;
left to right order is preserved. For example,

bash$ echo a{d,c,b}e

ade ace abe

A sequence expression takes the form {x..y[..incr]}, where x and y are either integers
or single characters, and incr, an optional increment, is an integer. When integers are
supplied, the expression expands to each number between x and y, inclusive. Supplied
integers may be prefixed with ‘0’ to force each term to have the same width. When either
x or y begins with a zero, the shell attempts to force all generated terms to contain the
same number of digits, zero-padding where necessary. When characters are supplied, the

Chapter 3: Basic Shell Features 23

expression expands to each character lexicographically between x and y, inclusive, using the
default C locale. Note that both x and y must be of the same type. When the increment
is supplied, it is used as the difference between each term. The default increment is 1 or -1
as appropriate.

Brace expansion is performed before any other expansions, and any characters special
to other expansions are preserved in the result. It is strictly textual. Bash does not apply
any syntactic interpretation to the context of the expansion or the text between the braces.

A correctly-formed brace expansion must contain unquoted opening and closing braces,
and at least one unquoted comma or a valid sequence expression. Any incorrectly formed
brace expansion is left unchanged.

A { or ‘,’ may be quoted with a backslash to prevent its being considered part of a brace
expression. To avoid conflicts with parameter expansion, the string ‘${’ is not considered
eligible for brace expansion, and inhibits brace expansion until the closing ‘}’..

This construct is typically used as shorthand when the common prefix of the strings to
be generated is longer than in the above example:

mkdir /usr/local/src/bash/{old,new,dist,bugs}

or

chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

3.5.2 Tilde Expansion

If a word begins with an unquoted tilde character (‘~’), all of the characters up to the first
unquoted slash (or all characters, if there is no unquoted slash) are considered a tilde-prefix.
If none of the characters in the tilde-prefix are quoted, the characters in the tilde-prefix
following the tilde are treated as a possible login name. If this login name is the null string,
the tilde is replaced with the value of the HOME shell variable. If HOME is unset, the home
directory of the user executing the shell is substituted instead. Otherwise, the tilde-prefix
is replaced with the home directory associated with the specified login name.

If the tilde-prefix is ‘~+’, the value of the shell variable PWD replaces the tilde-prefix. If
the tilde-prefix is ‘~-’, the value of the shell variable OLDPWD, if it is set, is substituted.

If the characters following the tilde in the tilde-prefix consist of a number N, optionally
prefixed by a ‘+’ or a ‘-’, the tilde-prefix is replaced with the corresponding element from the
directory stack, as it would be displayed by the dirs builtin invoked with the characters
following tilde in the tilde-prefix as an argument (see Section 6.8 [The Directory Stack],
page 95). If the tilde-prefix, sans the tilde, consists of a number without a leading ‘+’ or
‘-’, ‘+’ is assumed.

If the login name is invalid, or the tilde expansion fails, the word is left unchanged.

Each variable assignment is checked for unquoted tilde-prefixes immediately following
a ‘:’ or the first ‘=’. In these cases, tilde expansion is also performed. Consequently, one
may use filenames with tildes in assignments to PATH, MAILPATH, and CDPATH, and the shell
assigns the expanded value.

The following table shows how Bash treats unquoted tilde-prefixes:

~ The value of $HOME

~/foo $HOME/foo

Chapter 3: Basic Shell Features 24

~fred/foo

The subdirectory foo of the home directory of the user fred

~+/foo $PWD/foo

~-/foo ${OLDPWD-’~-’}/foo

~N The string that would be displayed by ‘dirs +N’

~+N The string that would be displayed by ‘dirs +N’

~-N The string that would be displayed by ‘dirs -N’

3.5.3 Shell Parameter Expansion

The ‘$’ character introduces parameter expansion, command substitution, or arithmetic
expansion. The parameter name or symbol to be expanded may be enclosed in braces, which
are optional but serve to protect the variable to be expanded from characters immediately
following it which could be interpreted as part of the name.

When braces are used, the matching ending brace is the first ‘}’ not escaped by a
backslash or within a quoted string, and not within an embedded arithmetic expansion,
command substitution, or parameter expansion.

The basic form of parameter expansion is ${parameter}. The value of parameter is
substituted. The parameter is a shell parameter as described above (see Section 3.4 [Shell
Parameters], page 19) or an array reference (see Section 6.7 [Arrays], page 93). The braces
are required when parameter is a positional parameter with more than one digit, or when
parameter is followed by a character that is not to be interpreted as part of its name.

If the first character of parameter is an exclamation point (!), and parameter is not a
nameref, it introduces a level of variable indirection. Bash uses the value of the variable
formed from the rest of parameter as the name of the variable; this variable is then expanded
and that value is used in the rest of the substitution, rather than the value of parameter
itself. This is known as indirect expansion. The value is subject to tilde expansion,
parameter expansion, command substitution, and arithmetic expansion. If parameter is
a nameref, this expands to the name of the variable referenced by parameter instead of
performing the complete indirect expansion. The exceptions to this are the expansions of
${!prefix*} and ${!name[@]} described below. The exclamation point must immediately
follow the left brace in order to introduce indirection.

In each of the cases below, word is subject to tilde expansion, parameter expansion,
command substitution, and arithmetic expansion.

When not performing substring expansion, using the form described below (e.g., ‘:-’),
Bash tests for a parameter that is unset or null. Omitting the colon results in a test only
for a parameter that is unset. Put another way, if the colon is included, the operator tests
for both parameter’s existence and that its value is not null; if the colon is omitted, the
operator tests only for existence.

${parameter:−word}
If parameter is unset or null, the expansion of word is substituted. Otherwise,
the value of parameter is substituted.

Chapter 3: Basic Shell Features 25

${parameter:=word}

If parameter is unset or null, the expansion of word is assigned to parameter.
The value of parameter is then substituted. Positional parameters and special
parameters may not be assigned to in this way.

${parameter:?word}

If parameter is null or unset, the expansion of word (or a message to that effect
if word is not present) is written to the standard error and the shell, if it is not
interactive, exits. Otherwise, the value of parameter is substituted.

${parameter:+word}

If parameter is null or unset, nothing is substituted, otherwise the expansion
of word is substituted.

${parameter:offset}

${parameter:offset:length}

This is referred to as Substring Expansion. It expands to up to length charac-
ters of the value of parameter starting at the character specified by offset. If
parameter is ‘@’, an indexed array subscripted by ‘@’ or ‘*’, or an associative ar-
ray name, the results differ as described below. If length is omitted, it expands
to the substring of the value of parameter starting at the character specified by
offset and extending to the end of the value. length and offset are arithmetic
expressions (see Section 6.5 [Shell Arithmetic], page 91).

If offset evaluates to a number less than zero, the value is used as an offset
in characters from the end of the value of parameter. If length evaluates to a
number less than zero, it is interpreted as an offset in characters from the end of
the value of parameter rather than a number of characters, and the expansion
is the characters between offset and that result. Note that a negative offset
must be separated from the colon by at least one space to avoid being confused
with the ‘:-’ expansion.

Here are some examples illustrating substring expansion on parameters and
subscripted arrays:

$ string=01234567890abcdefgh

$ echo ${string:7}

7890abcdefgh

$ echo ${string:7:0}

$ echo ${string:7:2}

78

$ echo ${string:7:-2}

7890abcdef

$ echo ${string: -7}

bcdefgh

$ echo ${string: -7:0}

$ echo ${string: -7:2}

bc

$ echo ${string: -7:-2}

Chapter 3: Basic Shell Features 26

bcdef

$ set -- 01234567890abcdefgh

$ echo ${1:7}

7890abcdefgh

$ echo ${1:7:0}

$ echo ${1:7:2}

78

$ echo ${1:7:-2}

7890abcdef

$ echo ${1: -7}

bcdefgh

$ echo ${1: -7:0}

$ echo ${1: -7:2}

bc

$ echo ${1: -7:-2}

bcdef

$ array[0]=01234567890abcdefgh

$ echo ${array[0]:7}

7890abcdefgh

$ echo ${array[0]:7:0}

$ echo ${array[0]:7:2}

78

$ echo ${array[0]:7:-2}

7890abcdef

$ echo ${array[0]: -7}

bcdefgh

$ echo ${array[0]: -7:0}

$ echo ${array[0]: -7:2}

bc

$ echo ${array[0]: -7:-2}

bcdef

If parameter is ‘@’, the result is length positional parameters beginning at offset.
A negative offset is taken relative to one greater than the greatest positional
parameter, so an offset of -1 evaluates to the last positional parameter. It is an
expansion error if length evaluates to a number less than zero.

The following examples illustrate substring expansion using positional param-
eters:

$ set -- 1 2 3 4 5 6 7 8 9 0 a b c d e f g h

$ echo ${@:7}

7 8 9 0 a b c d e f g h

$ echo ${@:7:0}

Chapter 3: Basic Shell Features 27

$ echo ${@:7:2}

7 8

$ echo ${@:7:-2}

bash: -2: substring expression < 0

$ echo ${@: -7:2}

b c

$ echo ${@:0}

./bash 1 2 3 4 5 6 7 8 9 0 a b c d e f g h

$ echo ${@:0:2}

./bash 1

$ echo ${@: -7:0}

If parameter is an indexed array name subscripted by ‘@’ or ‘*’, the result is
the length members of the array beginning with ${parameter[offset]}. A
negative offset is taken relative to one greater than the maximum index of the
specified array. It is an expansion error if length evaluates to a number less
than zero.

These examples show how you can use substring expansion with indexed arrays:

$ array=(0 1 2 3 4 5 6 7 8 9 0 a b c d e f g h)

$ echo ${array[@]:7}

7 8 9 0 a b c d e f g h

$ echo ${array[@]:7:2}

7 8

$ echo ${array[@]: -7:2}

b c

$ echo ${array[@]: -7:-2}

bash: -2: substring expression < 0

$ echo ${array[@]:0}

0 1 2 3 4 5 6 7 8 9 0 a b c d e f g h

$ echo ${array[@]:0:2}

0 1

$ echo ${array[@]: -7:0}

Substring expansion applied to an associative array produces undefined results.

Substring indexing is zero-based unless the positional parameters are used, in
which case the indexing starts at 1 by default. If offset is 0, and the positional
parameters are used, $@ is prefixed to the list.

${!prefix*}

${!prefix@}

Expands to the names of variables whose names begin with prefix, separated by
the first character of the IFS special variable. When ‘@’ is used and the expan-
sion appears within double quotes, each variable name expands to a separate
word.

Chapter 3: Basic Shell Features 28

${!name[@]}

${!name[*]}

If name is an array variable, expands to the list of array indices (keys) assigned
in name. If name is not an array, expands to 0 if name is set and null otherwise.
When ‘@’ is used and the expansion appears within double quotes, each key
expands to a separate word.

${#parameter}

The length in characters of the expanded value of parameter is substituted.
If parameter is ‘*’ or ‘@’, the value substituted is the number of positional
parameters. If parameter is an array name subscripted by ‘*’ or ‘@’, the value
substituted is the number of elements in the array. If parameter is an indexed
array name subscripted by a negative number, that number is interpreted as
relative to one greater than the maximum index of parameter, so negative
indices count back from the end of the array, and an index of -1 references the
last element.

${parameter#word}

${parameter##word}

The word is expanded to produce a pattern and matched according to the
rules described below (see Section 3.5.8.1 [Pattern Matching], page 32). If the
pattern matches the beginning of the expanded value of parameter, then the
result of the expansion is the expanded value of parameter with the shortest
matching pattern (the ‘#’ case) or the longest matching pattern (the ‘##’ case)
deleted. If parameter is ‘@’ or ‘*’, the pattern removal operation is applied to
each positional parameter in turn, and the expansion is the resultant list. If
parameter is an array variable subscripted with ‘@’ or ‘*’, the pattern removal
operation is applied to each member of the array in turn, and the expansion is
the resultant list.

${parameter%word}

${parameter%%word}

The word is expanded to produce a pattern and matched according to the
rules described below (see Section 3.5.8.1 [Pattern Matching], page 32). If the
pattern matches If the pattern matches a trailing portion of the expanded value
of parameter, then the result of the expansion is the value of parameter with the
shortest matching pattern (the ‘%’ case) or the longest matching pattern (the
‘%%’ case) deleted. If parameter is ‘@’ or ‘*’, the pattern removal operation is
applied to each positional parameter in turn, and the expansion is the resultant
list. If parameter is an array variable subscripted with ‘@’ or ‘*’, the pattern
removal operation is applied to each member of the array in turn, and the
expansion is the resultant list.

${parameter/pattern/string}

The pattern is expanded to produce a pattern just as in filename expansion.
Parameter is expanded and the longest match of pattern against its value is
replaced with string. The match is performed according to the rules described
below (see Section 3.5.8.1 [Pattern Matching], page 32). If pattern begins with
‘/’, all matches of pattern are replaced with string. Normally only the first

Chapter 3: Basic Shell Features 29

match is replaced. If pattern begins with ‘#’, it must match at the beginning of
the expanded value of parameter. If pattern begins with ‘%’, it must match at
the end of the expanded value of parameter. If string is null, matches of pattern
are deleted and the / following pattern may be omitted. If the nocasematch

shell option (see the description of shopt in Section 4.3.2 [The Shopt Builtin],
page 65) is enabled, the match is performed without regard to the case of
alphabetic characters. If parameter is ‘@’ or ‘*’, the substitution operation is
applied to each positional parameter in turn, and the expansion is the resultant
list. If parameter is an array variable subscripted with ‘@’ or ‘*’, the substitution
operation is applied to each member of the array in turn, and the expansion is
the resultant list.

${parameter^pattern}

${parameter^^pattern}

${parameter,pattern}

${parameter,,pattern}

This expansion modifies the case of alphabetic characters in parameter. The
pattern is expanded to produce a pattern just as in filename expansion. Each
character in the expanded value of parameter is tested against pattern, and, if
it matches the pattern, its case is converted. The pattern should not attempt
to match more than one character. The ‘^’ operator converts lowercase letters
matching pattern to uppercase; the ‘,’ operator converts matching uppercase
letters to lowercase. The ‘^^’ and ‘,,’ expansions convert each matched char-
acter in the expanded value; the ‘^’ and ‘,’ expansions match and convert only
the first character in the expanded value. If pattern is omitted, it is treated
like a ‘?’, which matches every character. If parameter is ‘@’ or ‘*’, the case
modification operation is applied to each positional parameter in turn, and the
expansion is the resultant list. If parameter is an array variable subscripted
with ‘@’ or ‘*’, the case modification operation is applied to each member of the
array in turn, and the expansion is the resultant list.

${parameter@operator}

The expansion is either a transformation of the value of parameter or informa-
tion about parameter itself, depending on the value of operator. Each operator
is a single letter:

Q The expansion is a string that is the value of parameter quoted in
a format that can be reused as input.

E The expansion is a string that is the value of parameter with back-
slash escape sequences expanded as with the $’...’ quoting mech-
anism.

P The expansion is a string that is the result of expanding the value of
parameter as if it were a prompt string (see Section 6.9 [Controlling
the Prompt], page 96).

A The expansion is a string in the form of an assignment statement or
declare command that, if evaluated, will recreate parameter with
its attributes and value.

Chapter 3: Basic Shell Features 30

a The expansion is a string consisting of flag values representing pa-
rameter’s attributes.

If parameter is ‘@’ or ‘*’, the operation is applied to each positional parameter
in turn, and the expansion is the resultant list. If parameter is an array variable
subscripted with ‘@’ or ‘*’, the operation is applied to each member of the array
in turn, and the expansion is the resultant list.

The result of the expansion is subject to word splitting and pathname expansion
as described below.

3.5.4 Command Substitution

Command substitution allows the output of a command to replace the command itself.
Command substitution occurs when a command is enclosed as follows:

$(command)

or

‘command‘

Bash performs the expansion by executing command in a subshell environment and replacing
the command substitution with the standard output of the command, with any trailing
newlines deleted. Embedded newlines are not deleted, but they may be removed during
word splitting. The command substitution $(cat file) can be replaced by the equivalent
but faster $(< file).

When the old-style backquote form of substitution is used, backslash retains its literal
meaning except when followed by ‘$’, ‘‘’, or ‘\’. The first backquote not preceded by a
backslash terminates the command substitution. When using the $(command) form, all
characters between the parentheses make up the command; none are treated specially.

Command substitutions may be nested. To nest when using the backquoted form, escape
the inner backquotes with backslashes.

If the substitution appears within double quotes, word splitting and filename expansion
are not performed on the results.

3.5.5 Arithmetic Expansion

Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution
of the result. The format for arithmetic expansion is:

$((expression))

The expression is treated as if it were within double quotes, but a double quote inside
the parentheses is not treated specially. All tokens in the expression undergo parameter
and variable expansion, command substitution, and quote removal. The result is treated as
the arithmetic expression to be evaluated. Arithmetic expansions may be nested.

The evaluation is performed according to the rules listed below (see Section 6.5 [Shell
Arithmetic], page 91). If the expression is invalid, Bash prints a message indicating failure
to the standard error and no substitution occurs.

3.5.6 Process Substitution

Process substitution allows a process’s input or output to be referred to using a filename.
It takes the form of

Chapter 3: Basic Shell Features 31

<(list)

or

>(list)

The process list is run asynchronously, and its input or output appears as a filename. This
filename is passed as an argument to the current command as the result of the expansion. If
the >(list) form is used, writing to the file will provide input for list. If the <(list) form
is used, the file passed as an argument should be read to obtain the output of list. Note that
no space may appear between the < or > and the left parenthesis, otherwise the construct
would be interpreted as a redirection. Process substitution is supported on systems that
support named pipes (fifos) or the /dev/fd method of naming open files.

When available, process substitution is performed simultaneously with parameter and
variable expansion, command substitution, and arithmetic expansion.

3.5.7 Word Splitting

The shell scans the results of parameter expansion, command substitution, and arithmetic
expansion that did not occur within double quotes for word splitting.

The shell treats each character of $IFS as a delimiter, and splits the results of the other
expansions into words using these characters as field terminators. If IFS is unset, or its value
is exactly <space><tab><newline>, the default, then sequences of <space>, <tab>, and
<newline> at the beginning and end of the results of the previous expansions are ignored,
and any sequence of IFS characters not at the beginning or end serves to delimit words.
If IFS has a value other than the default, then sequences of the whitespace characters
space, tab, and newline are ignored at the beginning and end of the word, as long as the
whitespace character is in the value of IFS (an IFS whitespace character). Any character in
IFS that is not IFS whitespace, along with any adjacent IFS whitespace characters, delimits
a field. A sequence of IFS whitespace characters is also treated as a delimiter. If the value
of IFS is null, no word splitting occurs.

Explicit null arguments ("" or ’’) are retained and passed to commands as empty strings.
Unquoted implicit null arguments, resulting from the expansion of parameters that have
no values, are removed. If a parameter with no value is expanded within double quotes, a
null argument results and is retained and passed to a command as an empty string. When
a quoted null argument appears as part of a word whose expansion is non-null, the null
argument is removed. That is, the word -d’’ becomes -d after word splitting and null
argument removal.

Note that if no expansion occurs, no splitting is performed.

3.5.8 Filename Expansion

After word splitting, unless the -f option has been set (see Section 4.3.1 [The Set Builtin],
page 61), Bash scans each word for the characters ‘*’, ‘?’, and ‘[’. If one of these characters
appears, then the word is regarded as a pattern, and replaced with an alphabetically sorted
list of filenames matching the pattern (see Section 3.5.8.1 [Pattern Matching], page 32). If
no matching filenames are found, and the shell option nullglob is disabled, the word is left
unchanged. If the nullglob option is set, and no matches are found, the word is removed.
If the failglob shell option is set, and no matches are found, an error message is printed

Chapter 3: Basic Shell Features 32

and the command is not executed. If the shell option nocaseglob is enabled, the match is
performed without regard to the case of alphabetic characters.

When a pattern is used for filename expansion, the character ‘.’ at the start of a filename
or immediately following a slash must be matched explicitly, unless the shell option dotglob

is set. The filenames ‘.’ and ‘..’ must always be matched explicitly, even if dotglob is set.
In other cases, the ‘.’ character is not treated specially.

When matching a filename, the slash character must always be matched explicitly by a
slash in the pattern, but in other matching contexts it can be matched by a special pattern
character as described below (see Section 3.5.8.1 [Pattern Matching], page 32).

See the description of shopt in Section 4.3.2 [The Shopt Builtin], page 65, for a descrip-
tion of the nocaseglob, nullglob, failglob, and dotglob options.

The GLOBIGNORE shell variable may be used to restrict the set of file names matching
a pattern. If GLOBIGNORE is set, each matching file name that also matches one of the
patterns in GLOBIGNORE is removed from the list of matches. If the nocaseglob option is
set, the matching against the patterns in GLOBIGNORE is performed without regard to case.
The filenames . and .. are always ignored when GLOBIGNORE is set and not null. However,
setting GLOBIGNORE to a non-null value has the effect of enabling the dotglob shell option,
so all other filenames beginning with a ‘.’ will match. To get the old behavior of ignoring
filenames beginning with a ‘.’, make ‘.*’ one of the patterns in GLOBIGNORE. The dotglob
option is disabled when GLOBIGNORE is unset.

3.5.8.1 Pattern Matching

Any character that appears in a pattern, other than the special pattern characters described
below, matches itself. The nul character may not occur in a pattern. A backslash escapes
the following character; the escaping backslash is discarded when matching. The special
pattern characters must be quoted if they are to be matched literally.

The special pattern characters have the following meanings:

* Matches any string, including the null string. When the globstar shell option
is enabled, and ‘*’ is used in a filename expansion context, two adjacent ‘*’s
used as a single pattern will match all files and zero or more directories and
subdirectories. If followed by a ‘/’, two adjacent ‘*’s will match only directories
and subdirectories.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated by a
hyphen denotes a range expression; any character that falls between those two
characters, inclusive, using the current locale’s collating sequence and character
set, is matched. If the first character following the ‘[’ is a ‘!’ or a ‘^’ then any
character not enclosed is matched. A ‘−’ may be matched by including it as the
first or last character in the set. A ‘]’ may be matched by including it as the
first character in the set. The sorting order of characters in range expressions is
determined by the current locale and the values of the LC_COLLATE and LC_ALL

shell variables, if set.

For example, in the default C locale, ‘[a-dx-z]’ is equivalent to ‘[abcdxyz]’.
Many locales sort characters in dictionary order, and in these locales

Chapter 3: Basic Shell Features 33

‘[a-dx-z]’ is typically not equivalent to ‘[abcdxyz]’; it might be equivalent
to ‘[aBbCcDdxXyYz]’, for example. To obtain the traditional interpretation of
ranges in bracket expressions, you can force the use of the C locale by setting
the LC_COLLATE or LC_ALL environment variable to the value ‘C’, or enable the
globasciiranges shell option.

Within ‘[’ and ‘]’, character classes can be specified using the syntax [:class:],
where class is one of the following classes defined in the posix standard:

alnum alpha ascii blank cntrl digit graph lower

print punct space upper word xdigit

A character class matches any character belonging to that class. The word

character class matches letters, digits, and the character ‘_’.

Within ‘[’ and ‘]’, an equivalence class can be specified using the syntax [=c=],
which matches all characters with the same collation weight (as defined by the
current locale) as the character c.

Within ‘[’ and ‘]’, the syntax [.symbol.]matches the collating symbol symbol.

If the extglob shell option is enabled using the shopt builtin, several extended pattern
matching operators are recognized. In the following description, a pattern-list is a list of
one or more patterns separated by a ‘|’. Composite patterns may be formed using one or
more of the following sub-patterns:

?(pattern-list)

Matches zero or one occurrence of the given patterns.

*(pattern-list)

Matches zero or more occurrences of the given patterns.

+(pattern-list)

Matches one or more occurrences of the given patterns.

@(pattern-list)

Matches one of the given patterns.

!(pattern-list)

Matches anything except one of the given patterns.

Complicated extended pattern matching against long strings is slow, especially when
the patterns contain alternations and the strings contain multiple matches. Using separate
matches against shorter strings, or using arrays of strings instead of a single long string,
may be faster.

3.5.9 Quote Removal

After the preceding expansions, all unquoted occurrences of the characters ‘\’, ‘’’, and ‘"’
that did not result from one of the above expansions are removed.

3.6 Redirections

Before a command is executed, its input and output may be redirected using a special no-
tation interpreted by the shell. Redirection allows commands’ file handles to be duplicated,
opened, closed, made to refer to different files, and can change the files the command reads

Chapter 3: Basic Shell Features 34

from and writes to. Redirection may also be used to modify file handles in the current
shell execution environment. The following redirection operators may precede or appear
anywhere within a simple command or may follow a command. Redirections are processed
in the order they appear, from left to right.

Each redirection that may be preceded by a file descriptor number may instead be
preceded by a word of the form {varname}. In this case, for each redirection operator
except >&- and <&-, the shell will allocate a file descriptor greater than 10 and assign it to
{varname}. If >&- or <&- is preceded by {varname}, the value of varname defines the file
descriptor to close. If {varname} is supplied, the redirection persists beyond the scope of
the command, allowing the shell programmer to manage the file descriptor himself.

In the following descriptions, if the file descriptor number is omitted, and the first char-
acter of the redirection operator is ‘<’, the redirection refers to the standard input (file
descriptor 0). If the first character of the redirection operator is ‘>’, the redirection refers
to the standard output (file descriptor 1).

The word following the redirection operator in the following descriptions, unless other-
wise noted, is subjected to brace expansion, tilde expansion, parameter expansion, command
substitution, arithmetic expansion, quote removal, filename expansion, and word splitting.
If it expands to more than one word, Bash reports an error.

Note that the order of redirections is significant. For example, the command

ls > dirlist 2>&1

directs both standard output (file descriptor 1) and standard error (file descriptor 2) to the
file dirlist, while the command

ls 2>&1 > dirlist

directs only the standard output to file dirlist, because the standard error was made a copy
of the standard output before the standard output was redirected to dirlist.

Bash handles several filenames specially when they are used in redirections, as described
in the following table. If the operating system on which Bash is running provides these
special files, bash will use them; otherwise it will emulate them internally with the behavior
described below.

/dev/fd/fd

If fd is a valid integer, file descriptor fd is duplicated.

/dev/stdin

File descriptor 0 is duplicated.

/dev/stdout

File descriptor 1 is duplicated.

/dev/stderr

File descriptor 2 is duplicated.

/dev/tcp/host/port

If host is a valid hostname or Internet address, and port is an integer port
number or service name, Bash attempts to open the corresponding TCP socket.

/dev/udp/host/port

If host is a valid hostname or Internet address, and port is an integer port
number or service name, Bash attempts to open the corresponding UDP socket.

Chapter 3: Basic Shell Features 35

A failure to open or create a file causes the redirection to fail.

Redirections using file descriptors greater than 9 should be used with care, as they may
conflict with file descriptors the shell uses internally.

3.6.1 Redirecting Input

Redirection of input causes the file whose name results from the expansion of word to be
opened for reading on file descriptor n, or the standard input (file descriptor 0) if n is not
specified.

The general format for redirecting input is:

[n]<word

3.6.2 Redirecting Output

Redirection of output causes the file whose name results from the expansion of word to be
opened for writing on file descriptor n, or the standard output (file descriptor 1) if n is not
specified. If the file does not exist it is created; if it does exist it is truncated to zero size.

The general format for redirecting output is:

[n]>[|]word

If the redirection operator is ‘>’, and the noclobber option to the set builtin has been
enabled, the redirection will fail if the file whose name results from the expansion of word
exists and is a regular file. If the redirection operator is ‘>|’, or the redirection operator is
‘>’ and the noclobber option is not enabled, the redirection is attempted even if the file
named by word exists.

3.6.3 Appending Redirected Output

Redirection of output in this fashion causes the file whose name results from the expansion of
word to be opened for appending on file descriptor n, or the standard output (file descriptor
1) if n is not specified. If the file does not exist it is created.

The general format for appending output is:

[n]>>word

3.6.4 Redirecting Standard Output and Standard Error

This construct allows both the standard output (file descriptor 1) and the standard error
output (file descriptor 2) to be redirected to the file whose name is the expansion of word.

There are two formats for redirecting standard output and standard error:

&>word

and

>&word

Of the two forms, the first is preferred. This is semantically equivalent to

>word 2>&1

When using the second form, word may not expand to a number or ‘-’. If it does,
other redirection operators apply (see Duplicating File Descriptors below) for compatibility
reasons.

Chapter 3: Basic Shell Features 36

3.6.5 Appending Standard Output and Standard Error

This construct allows both the standard output (file descriptor 1) and the standard error
output (file descriptor 2) to be appended to the file whose name is the expansion of word.

The format for appending standard output and standard error is:

&>>word

This is semantically equivalent to

>>word 2>&1

(see Duplicating File Descriptors below).

3.6.6 Here Documents

This type of redirection instructs the shell to read input from the current source until a line
containing only word (with no trailing blanks) is seen. All of the lines read up to that point
are then used as the standard input (or file descriptor n if n is specified) for a command.

The format of here-documents is:

[n]<<[−]word
here-document

delimiter

No parameter and variable expansion, command substitution, arithmetic expansion, or
filename expansion is performed on word. If any part of word is quoted, the delimiter is the
result of quote removal on word, and the lines in the here-document are not expanded. If
word is unquoted, all lines of the here-document are subjected to parameter expansion, com-
mand substitution, and arithmetic expansion, the character sequence \newline is ignored,
and ‘\’ must be used to quote the characters ‘\’, ‘$’, and ‘‘’.

If the redirection operator is ‘<<-’, then all leading tab characters are stripped from input
lines and the line containing delimiter. This allows here-documents within shell scripts to
be indented in a natural fashion.

3.6.7 Here Strings

A variant of here documents, the format is:

[n]<<< word

The word undergoes tilde expansion, parameter and variable expansion, command sub-
stitution, arithmetic expansion, and quote removal. Pathname expansion and word splitting
are not performed. The result is supplied as a single string, with a newline appended, to
the command on its standard input (or file descriptor n if n is specified).

3.6.8 Duplicating File Descriptors

The redirection operator

[n]<&word

is used to duplicate input file descriptors. If word expands to one or more digits, the file
descriptor denoted by n is made to be a copy of that file descriptor. If the digits in word
do not specify a file descriptor open for input, a redirection error occurs. If word evaluates
to ‘-’, file descriptor n is closed. If n is not specified, the standard input (file descriptor 0)
is used.

Chapter 3: Basic Shell Features 37

The operator

[n]>&word

is used similarly to duplicate output file descriptors. If n is not specified, the standard
output (file descriptor 1) is used. If the digits in word do not specify a file descriptor open
for output, a redirection error occurs. If word evaluates to ‘-’, file descriptor n is closed.
As a special case, if n is omitted, and word does not expand to one or more digits or ‘-’,
the standard output and standard error are redirected as described previously.

3.6.9 Moving File Descriptors

The redirection operator

[n]<&digit-

moves the file descriptor digit to file descriptor n, or the standard input (file descriptor 0)
if n is not specified. digit is closed after being duplicated to n.

Similarly, the redirection operator

[n]>&digit-

moves the file descriptor digit to file descriptor n, or the standard output (file descriptor 1)
if n is not specified.

3.6.10 Opening File Descriptors for Reading and Writing

The redirection operator

[n]<>word

causes the file whose name is the expansion of word to be opened for both reading and
writing on file descriptor n, or on file descriptor 0 if n is not specified. If the file does not
exist, it is created.

3.7 Executing Commands

3.7.1 Simple Command Expansion

When a simple command is executed, the shell performs the following expansions, assign-
ments, and redirections, from left to right.

1. The words that the parser has marked as variable assignments (those preceding the
command name) and redirections are saved for later processing.

2. The words that are not variable assignments or redirections are expanded (see
Section 3.5 [Shell Expansions], page 22). If any words remain after expansion, the
first word is taken to be the name of the command and the remaining words are the
arguments.

3. Redirections are performed as described above (see Section 3.6 [Redirections], page 33).

4. The text after the ‘=’ in each variable assignment undergoes tilde expansion, parameter
expansion, command substitution, arithmetic expansion, and quote removal before
being assigned to the variable.

If no command name results, the variable assignments affect the current shell environ-
ment. Otherwise, the variables are added to the environment of the executed command and
do not affect the current shell environment. If any of the assignments attempts to assign

Chapter 3: Basic Shell Features 38

a value to a readonly variable, an error occurs, and the command exits with a non-zero
status.

If no command name results, redirections are performed, but do not affect the current
shell environment. A redirection error causes the command to exit with a non-zero status.

If there is a command name left after expansion, execution proceeds as described below.
Otherwise, the command exits. If one of the expansions contained a command substitu-
tion, the exit status of the command is the exit status of the last command substitution
performed. If there were no command substitutions, the command exits with a status of
zero.

3.7.2 Command Search and Execution

After a command has been split into words, if it results in a simple command and an
optional list of arguments, the following actions are taken.

1. If the command name contains no slashes, the shell attempts to locate it. If there exists
a shell function by that name, that function is invoked as described in Section 3.3 [Shell
Functions], page 17.

2. If the name does not match a function, the shell searches for it in the list of shell
builtins. If a match is found, that builtin is invoked.

3. If the name is neither a shell function nor a builtin, and contains no slashes, Bash
searches each element of $PATH for a directory containing an executable file by that
name. Bash uses a hash table to remember the full pathnames of executable files to
avoid multiple PATH searches (see the description of hash in Section 4.1 [Bourne Shell
Builtins], page 43). A full search of the directories in $PATH is performed only if the
command is not found in the hash table. If the search is unsuccessful, the shell searches
for a defined shell function named command_not_found_handle. If that function exists,
it is invoked in a separate execution environment with the original command and the
original command’s arguments as its arguments, and the function’s exit status becomes
the exit status of that subshell. If that function is not defined, the shell prints an error
message and returns an exit status of 127.

4. If the search is successful, or if the command name contains one or more slashes, the
shell executes the named program in a separate execution environment. Argument 0
is set to the name given, and the remaining arguments to the command are set to the
arguments supplied, if any.

5. If this execution fails because the file is not in executable format, and the file is not
a directory, it is assumed to be a shell script and the shell executes it as described in
Section 3.8 [Shell Scripts], page 41.

6. If the command was not begun asynchronously, the shell waits for the command to
complete and collects its exit status.

3.7.3 Command Execution Environment

The shell has an execution environment, which consists of the following:

• open files inherited by the shell at invocation, as modified by redirections supplied to
the exec builtin

• the current working directory as set by cd, pushd, or popd, or inherited by the shell at
invocation

Chapter 3: Basic Shell Features 39

• the file creation mode mask as set by umask or inherited from the shell’s parent

• current traps set by trap

• shell parameters that are set by variable assignment or with set or inherited from the
shell’s parent in the environment

• shell functions defined during execution or inherited from the shell’s parent in the
environment

• options enabled at invocation (either by default or with command-line arguments) or
by set

• options enabled by shopt (see Section 4.3.2 [The Shopt Builtin], page 65)

• shell aliases defined with alias (see Section 6.6 [Aliases], page 92)

• various process ids, including those of background jobs (see Section 3.2.3 [Lists],
page 9), the value of $$, and the value of $PPID

When a simple command other than a builtin or shell function is to be executed, it is
invoked in a separate execution environment that consists of the following. Unless otherwise
noted, the values are inherited from the shell.

• the shell’s open files, plus any modifications and additions specified by redirections to
the command

• the current working directory

• the file creation mode mask

• shell variables and functions marked for export, along with variables exported for the
command, passed in the environment (see Section 3.7.4 [Environment], page 39)

• traps caught by the shell are reset to the values inherited from the shell’s parent, and
traps ignored by the shell are ignored

A command invoked in this separate environment cannot affect the shell’s execution
environment.

Command substitution, commands grouped with parentheses, and asynchronous com-
mands are invoked in a subshell environment that is a duplicate of the shell environment,
except that traps caught by the shell are reset to the values that the shell inherited from
its parent at invocation. Builtin commands that are invoked as part of a pipeline are also
executed in a subshell environment. Changes made to the subshell environment cannot
affect the shell’s execution environment.

Subshells spawned to execute command substitutions inherit the value of the -e option
from the parent shell. When not in posix mode, Bash clears the -e option in such subshells.

If a command is followed by a ‘&’ and job control is not active, the default standard input
for the command is the empty file /dev/null. Otherwise, the invoked command inherits
the file descriptors of the calling shell as modified by redirections.

3.7.4 Environment

When a program is invoked it is given an array of strings called the environment. This is a
list of name-value pairs, of the form name=value.

Bash provides several ways to manipulate the environment. On invocation, the shell
scans its own environment and creates a parameter for each name found, automatically

Chapter 3: Basic Shell Features 40

marking it for export to child processes. Executed commands inherit the environment. The
export and ‘declare -x’ commands allow parameters and functions to be added to and
deleted from the environment. If the value of a parameter in the environment is modified, the
new value becomes part of the environment, replacing the old. The environment inherited
by any executed command consists of the shell’s initial environment, whose values may be
modified in the shell, less any pairs removed by the unset and ‘export -n’ commands, plus
any additions via the export and ‘declare -x’ commands.

The environment for any simple command or function may be augmented temporarily
by prefixing it with parameter assignments, as described in Section 3.4 [Shell Parameters],
page 19. These assignment statements affect only the environment seen by that command.

If the -k option is set (see Section 4.3.1 [The Set Builtin], page 61), then all parameter
assignments are placed in the environment for a command, not just those that precede the
command name.

When Bash invokes an external command, the variable ‘$_’ is set to the full pathname
of the command and passed to that command in its environment.

3.7.5 Exit Status

The exit status of an executed command is the value returned by the waitpid system call or
equivalent function. Exit statuses fall between 0 and 255, though, as explained below, the
shell may use values above 125 specially. Exit statuses from shell builtins and compound
commands are also limited to this range. Under certain circumstances, the shell will use
special values to indicate specific failure modes.

For the shell’s purposes, a command which exits with a zero exit status has succeeded.
A non-zero exit status indicates failure. This seemingly counter-intuitive scheme is used so
there is one well-defined way to indicate success and a variety of ways to indicate various
failure modes. When a command terminates on a fatal signal whose number is N, Bash
uses the value 128+N as the exit status.

If a command is not found, the child process created to execute it returns a status of
127. If a command is found but is not executable, the return status is 126.

If a command fails because of an error during expansion or redirection, the exit status
is greater than zero.

The exit status is used by the Bash conditional commands (see Section 3.2.4.2 [Con-
ditional Constructs], page 11) and some of the list constructs (see Section 3.2.3 [Lists],
page 9).

All of the Bash builtins return an exit status of zero if they succeed and a non-zero
status on failure, so they may be used by the conditional and list constructs. All builtins
return an exit status of 2 to indicate incorrect usage, generally invalid options or missing
arguments.

3.7.6 Signals

When Bash is interactive, in the absence of any traps, it ignores SIGTERM (so that ‘kill
0’ does not kill an interactive shell), and SIGINT is caught and handled (so that the wait

builtin is interruptible). When Bash receives a SIGINT, it breaks out of any executing loops.
In all cases, Bash ignores SIGQUIT. If job control is in effect (see Chapter 7 [Job Control],
page 102), Bash ignores SIGTTIN, SIGTTOU, and SIGTSTP.

Chapter 3: Basic Shell Features 41

Non-builtin commands started by Bash have signal handlers set to the values inherited
by the shell from its parent. When job control is not in effect, asynchronous commands
ignore SIGINT and SIGQUIT in addition to these inherited handlers. Commands run as a
result of command substitution ignore the keyboard-generated job control signals SIGTTIN,
SIGTTOU, and SIGTSTP.

The shell exits by default upon receipt of a SIGHUP. Before exiting, an interactive shell
resends the SIGHUP to all jobs, running or stopped. Stopped jobs are sent SIGCONT to
ensure that they receive the SIGHUP. To prevent the shell from sending the SIGHUP signal
to a particular job, it should be removed from the jobs table with the disown builtin (see
Section 7.2 [Job Control Builtins], page 103) or marked to not receive SIGHUP using disown

-h.

If the huponexit shell option has been set with shopt (see Section 4.3.2 [The Shopt
Builtin], page 65), Bash sends a SIGHUP to all jobs when an interactive login shell exits.

If Bash is waiting for a command to complete and receives a signal for which a trap
has been set, the trap will not be executed until the command completes. When Bash is
waiting for an asynchronous command via the wait builtin, the reception of a signal for
which a trap has been set will cause the wait builtin to return immediately with an exit
status greater than 128, immediately after which the trap is executed.

3.8 Shell Scripts

A shell script is a text file containing shell commands. When such a file is used as the first
non-option argument when invoking Bash, and neither the -c nor -s option is supplied (see
Section 6.1 [Invoking Bash], page 84), Bash reads and executes commands from the file,
then exits. This mode of operation creates a non-interactive shell. The shell first searches
for the file in the current directory, and looks in the directories in $PATH if not found there.

When Bash runs a shell script, it sets the special parameter 0 to the name of the file,
rather than the name of the shell, and the positional parameters are set to the remain-
ing arguments, if any are given. If no additional arguments are supplied, the positional
parameters are unset.

A shell script may be made executable by using the chmod command to turn on the
execute bit. When Bash finds such a file while searching the $PATH for a command, it
spawns a subshell to execute it. In other words, executing

filename arguments

is equivalent to executing

bash filename arguments

if filename is an executable shell script. This subshell reinitializes itself, so that the effect
is as if a new shell had been invoked to interpret the script, with the exception that the
locations of commands remembered by the parent (see the description of hash in Section 4.1
[Bourne Shell Builtins], page 43) are retained by the child.

Most versions of Unix make this a part of the operating system’s command execution
mechanism. If the first line of a script begins with the two characters ‘#!’, the remainder
of the line specifies an interpreter for the program. Thus, you can specify Bash, awk, Perl,
or some other interpreter and write the rest of the script file in that language.

Chapter 3: Basic Shell Features 42

The arguments to the interpreter consist of a single optional argument following the
interpreter name on the first line of the script file, followed by the name of the script file,
followed by the rest of the arguments. Bash will perform this action on operating systems
that do not handle it themselves. Note that some older versions of Unix limit the interpreter
name and argument to a maximum of 32 characters.

Bash scripts often begin with #! /bin/bash (assuming that Bash has been installed in
/bin), since this ensures that Bash will be used to interpret the script, even if it is executed
under another shell.

43

4 Shell Builtin Commands

Builtin commands are contained within the shell itself. When the name of a builtin com-
mand is used as the first word of a simple command (see Section 3.2.1 [Simple Commands],
page 8), the shell executes the command directly, without invoking another program. Builtin
commands are necessary to implement functionality impossible or inconvenient to obtain
with separate utilities.

This section briefly describes the builtins which Bash inherits from the Bourne Shell, as
well as the builtin commands which are unique to or have been extended in Bash.

Several builtin commands are described in other chapters: builtin commands which
provide the Bash interface to the job control facilities (see Section 7.2 [Job Control Builtins],
page 103), the directory stack (see Section 6.8.1 [Directory Stack Builtins], page 95), the
command history (see Section 9.2 [Bash History Builtins], page 140), and the programmable
completion facilities (see Section 8.7 [Programmable Completion Builtins], page 133).

Many of the builtins have been extended by posix or Bash.

Unless otherwise noted, each builtin command documented as accepting options preceded
by ‘-’ accepts ‘--’ to signify the end of the options. The :, true, false, and test/[
builtins do not accept options and do not treat ‘--’ specially. The exit, logout, return,
break, continue, let, and shift builtins accept and process arguments beginning with
‘-’ without requiring ‘--’. Other builtins that accept arguments but are not specified as
accepting options interpret arguments beginning with ‘-’ as invalid options and require ‘--’
to prevent this interpretation.

4.1 Bourne Shell Builtins

The following shell builtin commands are inherited from the Bourne Shell. These commands
are implemented as specified by the posix standard.

: (a colon)
: [arguments]

Do nothing beyond expanding arguments and performing redirections. The
return status is zero.

. (a period)
. filename [arguments]

Read and execute commands from the filename argument in the current shell
context. If filename does not contain a slash, the PATH variable is used to find
filename. When Bash is not in posix mode, the current directory is searched
if filename is not found in $PATH. If any arguments are supplied, they become
the positional parameters when filename is executed. Otherwise the positional
parameters are unchanged. If the -T option is enabled, source inherits any
trap on DEBUG; if it is not, any DEBUG trap string is saved and restored around
the call to source, and source unsets the DEBUG trap while it executes. If
-T is not set, and the sourced file changes the DEBUG trap, the new value is
retained when source completes. The return status is the exit status of the
last command executed, or zero if no commands are executed. If filename is
not found, or cannot be read, the return status is non-zero. This builtin is
equivalent to source.

Chapter 4: Shell Builtin Commands 44

break

break [n]

Exit from a for, while, until, or select loop. If n is supplied, the nth
enclosing loop is exited. n must be greater than or equal to 1. The return
status is zero unless n is not greater than or equal to 1.

cd

cd [-L|[-P [-e]] [-@] [directory]

Change the current working directory to directory. If directory is not supplied,
the value of the HOME shell variable is used. Any additional arguments following
directory are ignored. If the shell variable CDPATH exists, it is used as a search
path: each directory name in CDPATH is searched for directory, with alternative
directory names in CDPATH separated by a colon (‘:’). If directory begins with
a slash, CDPATH is not used.

The -P option means to not follow symbolic links: symbolic links are resolved
while cd is traversing directory and before processing an instance of ‘..’ in
directory.

By default, or when the -L option is supplied, symbolic links in directory are
resolved after cd processes an instance of ‘..’ in directory.

If ‘..’ appears in directory, it is processed by removing the immediately pre-
ceding pathname component, back to a slash or the beginning of directory.

If the -e option is supplied with -P and the current working directory cannot
be successfully determined after a successful directory change, cd will return
an unsuccessful status.

On systems that support it, the -@ option presents the extended attributes
associated with a file as a directory.

If directory is ‘-’, it is converted to $OLDPWD before the directory change is
attempted.

If a non-empty directory name from CDPATH is used, or if ‘-’ is the first argu-
ment, and the directory change is successful, the absolute pathname of the new
working directory is written to the standard output.

The return status is zero if the directory is successfully changed, non-zero oth-
erwise.

continue

continue [n]

Resume the next iteration of an enclosing for, while, until, or select loop.
If n is supplied, the execution of the nth enclosing loop is resumed. n must be
greater than or equal to 1. The return status is zero unless n is not greater
than or equal to 1.

eval

eval [arguments]

The arguments are concatenated together into a single command, which is then
read and executed, and its exit status returned as the exit status of eval. If
there are no arguments or only empty arguments, the return status is zero.

Chapter 4: Shell Builtin Commands 45

exec

exec [-cl] [-a name] [command [arguments]]

If command is supplied, it replaces the shell without creating a new process.
If the -l option is supplied, the shell places a dash at the beginning of the
zeroth argument passed to command. This is what the login program does.
The -c option causes command to be executed with an empty environment.
If -a is supplied, the shell passes name as the zeroth argument to command.
If command cannot be executed for some reason, a non-interactive shell exits,
unless the execfail shell option is enabled. In that case, it returns failure. An
interactive shell returns failure if the file cannot be executed. A subshell exits
unconditionally if exec fails. If no command is specified, redirections may be
used to affect the current shell environment. If there are no redirection errors,
the return status is zero; otherwise the return status is non-zero.

exit

exit [n]

Exit the shell, returning a status of n to the shell’s parent. If n is omitted, the
exit status is that of the last command executed. Any trap on EXIT is executed
before the shell terminates.

export

export [-fn] [-p] [name[=value]]

Mark each name to be passed to child processes in the environment. If the
-f option is supplied, the names refer to shell functions; otherwise the names
refer to shell variables. The -n option means to no longer mark each name for
export. If no names are supplied, or if the -p option is given, a list of names
of all exported variables is displayed. The -p option displays output in a form
that may be reused as input. If a variable name is followed by =value, the value
of the variable is set to value.

The return status is zero unless an invalid option is supplied, one of the names
is not a valid shell variable name, or -f is supplied with a name that is not a
shell function.

getopts

getopts optstring name [args]

getopts is used by shell scripts to parse positional parameters. optstring con-
tains the option characters to be recognized; if a character is followed by a
colon, the option is expected to have an argument, which should be separated
from it by whitespace. The colon (‘:’) and question mark (‘?’) may not be
used as option characters. Each time it is invoked, getopts places the next
option in the shell variable name, initializing name if it does not exist, and the
index of the next argument to be processed into the variable OPTIND. OPTIND

is initialized to 1 each time the shell or a shell script is invoked. When an
option requires an argument, getopts places that argument into the variable
OPTARG. The shell does not reset OPTIND automatically; it must be manually
reset between multiple calls to getopts within the same shell invocation if a
new set of parameters is to be used.

Chapter 4: Shell Builtin Commands 46

When the end of options is encountered, getopts exits with a return value
greater than zero. OPTIND is set to the index of the first non-option argument,
and name is set to ‘?’.

getopts normally parses the positional parameters, but if more arguments are
given in args, getopts parses those instead.

getopts can report errors in two ways. If the first character of optstring is a
colon, silent error reporting is used. In normal operation, diagnostic messages
are printed when invalid options or missing option arguments are encountered.
If the variable OPTERR is set to 0, no error messages will be displayed, even if
the first character of optstring is not a colon.

If an invalid option is seen, getopts places ‘?’ into name and, if not silent,
prints an error message and unsets OPTARG. If getopts is silent, the option
character found is placed in OPTARG and no diagnostic message is printed.

If a required argument is not found, and getopts is not silent, a question mark
(‘?’) is placed in name, OPTARG is unset, and a diagnostic message is printed. If
getopts is silent, then a colon (‘:’) is placed in name and OPTARG is set to the
option character found.

hash

hash [-r] [-p filename] [-dt] [name]

Each time hash is invoked, it remembers the full pathnames of the commands
specified as name arguments, so they need not be searched for on subsequent
invocations. The commands are found by searching through the directories
listed in $PATH. Any previously-remembered pathname is discarded. The -p

option inhibits the path search, and filename is used as the location of name.
The -r option causes the shell to forget all remembered locations. The -d

option causes the shell to forget the remembered location of each name. If the
-t option is supplied, the full pathname to which each name corresponds is
printed. If multiple name arguments are supplied with -t, the name is printed
before the hashed full pathname. The -l option causes output to be displayed
in a format that may be reused as input. If no arguments are given, or if only -l

is supplied, information about remembered commands is printed. The return
status is zero unless a name is not found or an invalid option is supplied.

pwd

pwd [-LP]

Print the absolute pathname of the current working directory. If the -P option
is supplied, the pathname printed will not contain symbolic links. If the -L

option is supplied, the pathname printed may contain symbolic links. The
return status is zero unless an error is encountered while determining the name
of the current directory or an invalid option is supplied.

readonly

readonly [-aAf] [-p] [name[=value]] ...

Mark each name as readonly. The values of these names may not be changed
by subsequent assignment. If the -f option is supplied, each name refers to

Chapter 4: Shell Builtin Commands 47

a shell function. The -a option means each name refers to an indexed array
variable; the -A option means each name refers to an associative array variable.
If both options are supplied, -A takes precedence. If no name arguments are
given, or if the -p option is supplied, a list of all readonly names is printed.
The other options may be used to restrict the output to a subset of the set of
readonly names. The -p option causes output to be displayed in a format that
may be reused as input. If a variable name is followed by =value, the value of
the variable is set to value. The return status is zero unless an invalid option
is supplied, one of the name arguments is not a valid shell variable or function
name, or the -f option is supplied with a name that is not a shell function.

return

return [n]

Cause a shell function to stop executing and return the value n to its caller.
If n is not supplied, the return value is the exit status of the last command
executed in the function. If return is executed by a trap handler, the last
command used to determine the status is the last command executed before
the trap handler. If return is executed during a DEBUG trap, the last command
used to determine the status is the last command executed by the trap handler
before return was invoked. return may also be used to terminate execution of
a script being executed with the . (source) builtin, returning either n or the
exit status of the last command executed within the script as the exit status
of the script. If n is supplied, the return value is its least significant 8 bits.
Any command associated with the RETURN trap is executed before execution
resumes after the function or script. The return status is non-zero if return is
supplied a non-numeric argument or is used outside a function and not during
the execution of a script by . or source.

shift

shift [n]

Shift the positional parameters to the left by n. The positional parameters
from n+1 . . . $# are renamed to $1 . . . $#-n. Parameters represented by the
numbers $# to $#-n+1 are unset. n must be a non-negative number less than or
equal to $#. If n is zero or greater than $#, the positional parameters are not
changed. If n is not supplied, it is assumed to be 1. The return status is zero
unless n is greater than $# or less than zero, non-zero otherwise.

test

[

test expr

Evaluate a conditional expression expr and return a status of 0 (true) or 1
(false). Each operator and operand must be a separate argument. Expressions
are composed of the primaries described below in Section 6.4 [Bash Conditional
Expressions], page 89. test does not accept any options, nor does it accept
and ignore an argument of -- as signifying the end of options.

When the [form is used, the last argument to the command must be a].

Chapter 4: Shell Builtin Commands 48

Expressions may be combined using the following operators, listed in decreasing
order of precedence. The evaluation depends on the number of arguments; see
below. Operator precedence is used when there are five or more arguments.

! expr True if expr is false.

(expr) Returns the value of expr. This may be used to override the normal
precedence of operators.

expr1 -a expr2

True if both expr1 and expr2 are true.

expr1 -o expr2

True if either expr1 or expr2 is true.

The test and [builtins evaluate conditional expressions using a set of rules
based on the number of arguments.

0 arguments
The expression is false.

1 argument
The expression is true if, and only if, the argument is not null.

2 arguments
If the first argument is ‘!’, the expression is true if and only if the
second argument is null. If the first argument is one of the unary
conditional operators (see Section 6.4 [Bash Conditional Expres-
sions], page 89), the expression is true if the unary test is true. If
the first argument is not a valid unary operator, the expression is
false.

3 arguments
The following conditions are applied in the order listed. If the
second argument is one of the binary conditional operators (see
Section 6.4 [Bash Conditional Expressions], page 89), the result
of the expression is the result of the binary test using the first
and third arguments as operands. The ‘-a’ and ‘-o’ operators are
considered binary operators when there are three arguments. If the
first argument is ‘!’, the value is the negation of the two-argument
test using the second and third arguments. If the first argument
is exactly ‘(’ and the third argument is exactly ‘)’, the result is
the one-argument test of the second argument. Otherwise, the
expression is false.

4 arguments
If the first argument is ‘!’, the result is the negation of the three-
argument expression composed of the remaining arguments. Oth-
erwise, the expression is parsed and evaluated according to prece-
dence using the rules listed above.

5 or more arguments
The expression is parsed and evaluated according to precedence
using the rules listed above.

Chapter 4: Shell Builtin Commands 49

When used with test or ‘[’, the ‘<’ and ‘>’ operators sort lexicographically
using ASCII ordering.

times

times

Print out the user and system times used by the shell and its children. The
return status is zero.

trap

trap [-lp] [arg] [sigspec ...]

The commands in arg are to be read and executed when the shell receives
signal sigspec. If arg is absent (and there is a single sigspec) or equal to ‘-’,
each specified signal’s disposition is reset to the value it had when the shell
was started. If arg is the null string, then the signal specified by each sigspec
is ignored by the shell and commands it invokes. If arg is not present and -p

has been supplied, the shell displays the trap commands associated with each
sigspec. If no arguments are supplied, or only -p is given, trap prints the list
of commands associated with each signal number in a form that may be reused
as shell input. The -l option causes the shell to print a list of signal names and
their corresponding numbers. Each sigspec is either a signal name or a signal
number. Signal names are case insensitive and the SIG prefix is optional.

If a sigspec is 0 or EXIT, arg is executed when the shell exits. If a sigspec is
DEBUG, the command arg is executed before every simple command, for com-
mand, case command, select command, every arithmetic for command, and
before the first command executes in a shell function. Refer to the description of
the extdebug option to the shopt builtin (see Section 4.3.2 [The Shopt Builtin],
page 65) for details of its effect on the DEBUG trap. If a sigspec is RETURN, the
command arg is executed each time a shell function or a script executed with
the . or source builtins finishes executing.

If a sigspec is ERR, the command arg is executed whenever a pipeline (which may
consist of a single simple command), a list, or a compound command returns
a non-zero exit status, subject to the following conditions. The ERR trap is
not executed if the failed command is part of the command list immediately
following an until or while keyword, part of the test following the if or elif
reserved words, part of a command executed in a && or || list except the
command following the final && or ||, any command in a pipeline but the last,
or if the command’s return status is being inverted using !. These are the same
conditions obeyed by the errexit (-e) option.

Signals ignored upon entry to the shell cannot be trapped or reset. Trapped
signals that are not being ignored are reset to their original values in a subshell
or subshell environment when one is created.

The return status is zero unless a sigspec does not specify a valid signal.

umask

umask [-p] [-S] [mode]

Set the shell process’s file creation mask to mode. If mode begins with a digit,
it is interpreted as an octal number; if not, it is interpreted as a symbolic mode

Chapter 4: Shell Builtin Commands 50

mask similar to that accepted by the chmod command. If mode is omitted, the
current value of the mask is printed. If the -S option is supplied without a
mode argument, the mask is printed in a symbolic format. If the -p option is
supplied, and mode is omitted, the output is in a form that may be reused as
input. The return status is zero if the mode is successfully changed or if no
mode argument is supplied, and non-zero otherwise.

Note that when the mode is interpreted as an octal number, each number of
the umask is subtracted from 7. Thus, a umask of 022 results in permissions
of 755.

unset

unset [-fnv] [name]

Remove each variable or function name. If the -v option is given, each name
refers to a shell variable and that variable is removed. If the -f option is given,
the names refer to shell functions, and the function definition is removed. If
the -n option is supplied, and name is a variable with the nameref attribute,
name will be unset rather than the variable it references. -n has no effect if
the -f option is supplied. If no options are supplied, each name refers to a
variable; if there is no variable by that name, any function with that name is
unset. Readonly variables and functions may not be unset. The return status
is zero unless a name is readonly.

4.2 Bash Builtin Commands

This section describes builtin commands which are unique to or have been extended in
Bash. Some of these commands are specified in the posix standard.

alias

alias [-p] [name[=value] ...]

Without arguments or with the -p option, alias prints the list of aliases on the
standard output in a form that allows them to be reused as input. If arguments
are supplied, an alias is defined for each name whose value is given. If no value
is given, the name and value of the alias is printed. Aliases are described in
Section 6.6 [Aliases], page 92.

bind

bind [-m keymap] [-lpsvPSVX]

bind [-m keymap] [-q function] [-u function] [-r keyseq]

bind [-m keymap] -f filename

bind [-m keymap] -x keyseq:shell-command

bind [-m keymap] keyseq:function-name

bind [-m keymap] keyseq:readline-command

Display current Readline (see Chapter 8 [Command Line Editing], page 106) key
and function bindings, bind a key sequence to a Readline function or macro,
or set a Readline variable. Each non-option argument is a command as it
would appear in a Readline initialization file (see Section 8.3 [Readline Init
File], page 109), but each binding or command must be passed as a separate
argument; e.g., ‘"\C-x\C-r":re-read-init-file’.

Chapter 4: Shell Builtin Commands 51

Options, if supplied, have the following meanings:

-m keymap Use keymap as the keymap to be affected by the subsequent
bindings. Acceptable keymap names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and
vi-insert. vi is equivalent to vi-command (vi-move is also a
synonym); emacs is equivalent to emacs-standard.

-l List the names of all Readline functions.

-p Display Readline function names and bindings in such a way that
they can be used as input or in a Readline initialization file.

-P List current Readline function names and bindings.

-v Display Readline variable names and values in such a way that they
can be used as input or in a Readline initialization file.

-V List current Readline variable names and values.

-s Display Readline key sequences bound to macros and the strings
they output in such a way that they can be used as input or in a
Readline initialization file.

-S Display Readline key sequences bound to macros and the strings
they output.

-f filename

Read key bindings from filename.

-q function

Query about which keys invoke the named function.

-u function

Unbind all keys bound to the named function.

-r keyseq Remove any current binding for keyseq.

-x keyseq:shell-command

Cause shell-command to be executed whenever keyseq is entered.
When shell-command is executed, the shell sets the READLINE_

LINE variable to the contents of the Readline line buffer and the
READLINE_POINT variable to the current location of the insertion
point. If the executed command changes the value of READLINE_
LINE or READLINE_POINT, those new values will be reflected in the
editing state.

-X List all key sequences bound to shell commands and the associated
commands in a format that can be reused as input.

The return status is zero unless an invalid option is supplied or an error occurs.

builtin

builtin [shell-builtin [args]]

Run a shell builtin, passing it args, and return its exit status. This is useful
when defining a shell function with the same name as a shell builtin, retaining

Chapter 4: Shell Builtin Commands 52

the functionality of the builtin within the function. The return status is non-
zero if shell-builtin is not a shell builtin command.

caller

caller [expr]

Returns the context of any active subroutine call (a shell function or a script
executed with the . or source builtins).

Without expr, caller displays the line number and source filename of the
current subroutine call. If a non-negative integer is supplied as expr, caller
displays the line number, subroutine name, and source file corresponding to
that position in the current execution call stack. This extra information may
be used, for example, to print a stack trace. The current frame is frame 0.

The return value is 0 unless the shell is not executing a subroutine call or expr
does not correspond to a valid position in the call stack.

command

command [-pVv] command [arguments ...]

Runs command with arguments ignoring any shell function named command.
Only shell builtin commands or commands found by searching the PATH are
executed. If there is a shell function named ls, running ‘command ls’ within
the function will execute the external command ls instead of calling the func-
tion recursively. The -p option means to use a default value for PATH that is
guaranteed to find all of the standard utilities. The return status in this case
is 127 if command cannot be found or an error occurred, and the exit status of
command otherwise.

If either the -V or -v option is supplied, a description of command is printed.
The -v option causes a single word indicating the command or file name used
to invoke command to be displayed; the -V option produces a more verbose
description. In this case, the return status is zero if command is found, and
non-zero if not.

declare

declare [-aAfFgilnrtux] [-p] [name[=value] ...]

Declare variables and give them attributes. If no names are given, then display
the values of variables instead.

The -p option will display the attributes and values of each name. When -p

is used with name arguments, additional options, other than -f and -F, are
ignored.

When -p is supplied without name arguments, declare will display the at-
tributes and values of all variables having the attributes specified by the addi-
tional options. If no other options are supplied with -p, declare will display
the attributes and values of all shell variables. The -f option will restrict the
display to shell functions.

The -F option inhibits the display of function definitions; only the function
name and attributes are printed. If the extdebug shell option is enabled using

Chapter 4: Shell Builtin Commands 53

shopt (see Section 4.3.2 [The Shopt Builtin], page 65), the source file name and
line number where each name is defined are displayed as well. -F implies -f.

The -g option forces variables to be created or modified at the global scope,
even when declare is executed in a shell function. It is ignored in all other
cases.

The following options can be used to restrict output to variables with the spec-
ified attributes or to give variables attributes:

-a Each name is an indexed array variable (see Section 6.7 [Arrays],
page 93).

-A Each name is an associative array variable (see Section 6.7 [Arrays],
page 93).

-f Use function names only.

-i The variable is to be treated as an integer; arithmetic evaluation
(see Section 6.5 [Shell Arithmetic], page 91) is performed when the
variable is assigned a value.

-l When the variable is assigned a value, all upper-case characters are
converted to lower-case. The upper-case attribute is disabled.

-n Give each name the nameref attribute, making it a name reference
to another variable. That other variable is defined by the value of
name. All references, assignments, and attribute modifications to
name, except for those using or changing the -n attribute itself, are
performed on the variable referenced by name’s value. The nameref
attribute cannot be applied to array variables.

-r Make names readonly. These names cannot then be assigned values
by subsequent assignment statements or unset.

-t Give each name the trace attribute. Traced functions inherit the
DEBUG and RETURN traps from the calling shell. The trace attribute
has no special meaning for variables.

-u When the variable is assigned a value, all lower-case characters are
converted to upper-case. The lower-case attribute is disabled.

-x Mark each name for export to subsequent commands via the envi-
ronment.

Using ‘+’ instead of ‘-’ turns off the attribute instead, with the exceptions that
‘+a’ may not be used to destroy an array variable and ‘+r’ will not remove the
readonly attribute. When used in a function, declare makes each name local,
as with the local command, unless the -g option is used. If a variable name
is followed by =value, the value of the variable is set to value.

When using -a or -A and the compound assignment syntax to create array
variables, additional attributes do not take effect until subsequent assignments.

The return status is zero unless an invalid option is encountered, an attempt
is made to define a function using ‘-f foo=bar’, an attempt is made to assign

Chapter 4: Shell Builtin Commands 54

a value to a readonly variable, an attempt is made to assign a value to an
array variable without using the compound assignment syntax (see Section 6.7
[Arrays], page 93), one of the names is not a valid shell variable name, an
attempt is made to turn off readonly status for a readonly variable, an attempt
is made to turn off array status for an array variable, or an attempt is made to
display a non-existent function with -f.

echo

echo [-neE] [arg ...]

Output the args, separated by spaces, terminated with a newline. The return
status is 0 unless a write error occurs. If -n is specified, the trailing newline is
suppressed. If the -e option is given, interpretation of the following backslash-
escaped characters is enabled. The -E option disables the interpretation of
these escape characters, even on systems where they are interpreted by default.
The xpg_echo shell option may be used to dynamically determine whether or
not echo expands these escape characters by default. echo does not interpret
-- to mean the end of options.

echo interprets the following escape sequences:

\a alert (bell)

\b backspace

\c suppress further output

\e

\E escape

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\0nnn the eight-bit character whose value is the octal value nnn (zero to
three octal digits)

\xHH the eight-bit character whose value is the hexadecimal value HH
(one or two hex digits)

\uHHHH the Unicode (ISO/IEC 10646) character whose value is the hex-
adecimal value HHHH (one to four hex digits)

\UHHHHHHHH

the Unicode (ISO/IEC 10646) character whose value is the hex-
adecimal value HHHHHHHH (one to eight hex digits)

enable

enable [-a] [-dnps] [-f filename] [name ...]

Chapter 4: Shell Builtin Commands 55

Enable and disable builtin shell commands. Disabling a builtin allows a disk
command which has the same name as a shell builtin to be executed without
specifying a full pathname, even though the shell normally searches for builtins
before disk commands. If -n is used, the names become disabled. Otherwise
names are enabled. For example, to use the test binary found via $PATH

instead of the shell builtin version, type ‘enable -n test’.

If the -p option is supplied, or no name arguments appear, a list of shell
builtins is printed. With no other arguments, the list consists of all enabled
shell builtins. The -a option means to list each builtin with an indication of
whether or not it is enabled.

The -f option means to load the new builtin command name from shared object
filename, on systems that support dynamic loading. The -d option will delete
a builtin loaded with -f.

If there are no options, a list of the shell builtins is displayed. The -s option
restricts enable to the posix special builtins. If -s is used with -f, the new
builtin becomes a special builtin (see Section 4.4 [Special Builtins], page 71).

The return status is zero unless a name is not a shell builtin or there is an error
loading a new builtin from a shared object.

help

help [-dms] [pattern]

Display helpful information about builtin commands. If pattern is specified,
help gives detailed help on all commands matching pattern, otherwise a list of
the builtins is printed.

Options, if supplied, have the following meanings:

-d Display a short description of each pattern

-m Display the description of each pattern in a manpage-like format

-s Display only a short usage synopsis for each pattern

The return status is zero unless no command matches pattern.

let

let expression [expression ...]

The let builtin allows arithmetic to be performed on shell variables. Each
expression is evaluated according to the rules given below in Section 6.5 [Shell
Arithmetic], page 91. If the last expression evaluates to 0, let returns 1;
otherwise 0 is returned.

local

local [option] name[=value] ...

For each argument, a local variable named name is created, and assigned value.
The option can be any of the options accepted by declare. local can only
be used within a function; it makes the variable name have a visible scope
restricted to that function and its children. If name is ‘-’, the set of shell
options is made local to the function in which local is invoked: shell options

Chapter 4: Shell Builtin Commands 56

changed using the set builtin inside the function are restored to their original
values when the function returns. The return status is zero unless local is used
outside a function, an invalid name is supplied, or name is a readonly variable.

logout

logout [n]

Exit a login shell, returning a status of n to the shell’s parent.

mapfile

mapfile [-d delim] [-n count] [-O origin] [-s count] [-t] [-u fd]

[-C callback] [-c quantum] [array]

Read lines from the standard input into the indexed array variable array, or
from file descriptor fd if the -u option is supplied. The variable MAPFILE is the
default array. Options, if supplied, have the following meanings:

-d The first character of delim is used to terminate each input line,
rather than newline. If delim is the empty string, mapfile will
terminate a line when it reads a NUL character.

-n Copy at most count lines. If count is 0, all lines are copied.

-O Begin assigning to array at index origin. The default index is 0.

-s Discard the first count lines read.

-t Remove a trailing delim (default newline) from each line read.

-u Read lines from file descriptor fd instead of the standard input.

-C Evaluate callback each time quantum lines are read. The -c option
specifies quantum.

-c Specify the number of lines read between each call to callback.

If -C is specified without -c, the default quantum is 5000. When callback is
evaluated, it is supplied the index of the next array element to be assigned and
the line to be assigned to that element as additional arguments. callback is
evaluated after the line is read but before the array element is assigned.

If not supplied with an explicit origin, mapfile will clear array before assigning
to it.

mapfile returns successfully unless an invalid option or option argument is
supplied, array is invalid or unassignable, or array is not an indexed array.

printf

printf [-v var] format [arguments]

Write the formatted arguments to the standard output under the control of the
format. The -v option causes the output to be assigned to the variable var
rather than being printed to the standard output.

The format is a character string which contains three types of objects: plain
characters, which are simply copied to standard output, character escape se-
quences, which are converted and copied to the standard output, and format
specifications, each of which causes printing of the next successive argument.

Chapter 4: Shell Builtin Commands 57

In addition to the standard printf(1) formats, printf interprets the following
extensions:

%b Causes printf to expand backslash escape sequences in the cor-
responding argument in the same way as echo -e (see Section 4.2
[Bash Builtins], page 50).

%q Causes printf to output the corresponding argument in a format
that can be reused as shell input.

%(datefmt)T

Causes printf to output the date-time string resulting from using
datefmt as a format string for strftime(3). The corresponding
argument is an integer representing the number of seconds since
the epoch. Two special argument values may be used: -1 represents
the current time, and -2 represents the time the shell was invoked.
If no argument is specified, conversion behaves as if -1 had been
given. This is an exception to the usual printf behavior.

Arguments to non-string format specifiers are treated as C language constants,
except that a leading plus or minus sign is allowed, and if the leading character is
a single or double quote, the value is the ASCII value of the following character.

The format is reused as necessary to consume all of the arguments. If the for-
mat requires more arguments than are supplied, the extra format specifications
behave as if a zero value or null string, as appropriate, had been supplied. The
return value is zero on success, non-zero on failure.

read

read [-ers] [-a aname] [-d delim] [-i text] [-n nchars]

[-N nchars] [-p prompt] [-t timeout] [-u fd] [name ...]

One line is read from the standard input, or from the file descriptor fd sup-
plied as an argument to the -u option, split into words as described above in
Section 3.5.7 [Word Splitting], page 31, and the first word is assigned to the
first name, the second word to the second name, and so on. If there are more
words than names, the remaining words and their intervening delimiters are
assigned to the last name. If there are fewer words read from the input stream
than names, the remaining names are assigned empty values. The characters
in the value of the IFS variable are used to split the line into words using the
same rules the shell uses for expansion (described above in Section 3.5.7 [Word
Splitting], page 31). The backslash character ‘\’ may be used to remove any
special meaning for the next character read and for line continuation. If no
names are supplied, the line read is assigned to the variable REPLY. The exit
status is zero, unless end-of-file is encountered, read times out (in which case
the status is greater than 128), a variable assignment error (such as assigning
to a readonly variable) occurs, or an invalid file descriptor is supplied as the
argument to -u.

Options, if supplied, have the following meanings:

Chapter 4: Shell Builtin Commands 58

-a aname The words are assigned to sequential indices of the array variable
aname, starting at 0. All elements are removed from aname before
the assignment. Other name arguments are ignored.

-d delim The first character of delim is used to terminate the input line,
rather than newline. If delim is the empty string, read will termi-
nate a line when it reads a NUL character.

-e Readline (see Chapter 8 [Command Line Editing], page 106) is
used to obtain the line. Readline uses the current (or default, if
line editing was not previously active) editing settings, but uses
Readline’s default filename completion.

-i text If Readline is being used to read the line, text is placed into the
editing buffer before editing begins.

-n nchars read returns after reading nchars characters rather than waiting
for a complete line of input, but honors a delimiter if fewer than
nchars characters are read before the delimiter.

-N nchars read returns after reading exactly nchars characters rather than
waiting for a complete line of input, unless EOF is encountered or
read times out. Delimiter characters encountered in the input are
not treated specially and do not cause read to return until nchars
characters are read. The result is not split on the characters in IFS;
the intent is that the variable is assigned exactly the characters read
(with the exception of backslash; see the -r option below).

-p prompt Display prompt, without a trailing newline, before attempting to
read any input. The prompt is displayed only if input is coming
from a terminal.

-r If this option is given, backslash does not act as an escape character.
The backslash is considered to be part of the line. In particular, a
backslash-newline pair may not be used as a line continuation.

-s Silent mode. If input is coming from a terminal, characters are not
echoed.

-t timeout

Cause read to time out and return failure if a complete line of
input (or a specified number of characters) is not read within time-
out seconds. timeout may be a decimal number with a fractional
portion following the decimal point. This option is only effective if
read is reading input from a terminal, pipe, or other special file;
it has no effect when reading from regular files. If read times out,
read saves any partial input read into the specified variable name.
If timeout is 0, read returns immediately, without trying to read
and data. The exit status is 0 if input is available on the specified
file descriptor, non-zero otherwise. The exit status is greater than
128 if the timeout is exceeded.

-u fd Read input from file descriptor fd.

Chapter 4: Shell Builtin Commands 59

readarray

readarray [-d delim] [-n count] [-O origin] [-s count] [-t] [-u fd]

[-C callback] [-c quantum] [array]

Read lines from the standard input into the indexed array variable array, or
from file descriptor fd if the -u option is supplied.

A synonym for mapfile.

source

source filename

A synonym for . (see Section 4.1 [Bourne Shell Builtins], page 43).

type

type [-afptP] [name ...]

For each name, indicate how it would be interpreted if used as a command
name.

If the -t option is used, type prints a single word which is one of ‘alias’,
‘function’, ‘builtin’, ‘file’ or ‘keyword’, if name is an alias, shell function,
shell builtin, disk file, or shell reserved word, respectively. If the name is not
found, then nothing is printed, and type returns a failure status.

If the -p option is used, type either returns the name of the disk file that would
be executed, or nothing if -t would not return ‘file’.

The -P option forces a path search for each name, even if -t would not return
‘file’.

If a command is hashed, -p and -P print the hashed value, which is not neces-
sarily the file that appears first in $PATH.

If the -a option is used, type returns all of the places that contain an executable
named file. This includes aliases and functions, if and only if the -p option is
not also used.

If the -f option is used, type does not attempt to find shell functions, as with
the command builtin.

The return status is zero if all of the names are found, non-zero if any are not
found.

typeset

typeset [-afFgrxilnrtux] [-p] [name[=value] ...]

The typeset command is supplied for compatibility with the Korn shell. It is
a synonym for the declare builtin command.

ulimit

ulimit [-HSabcdefiklmnpqrstuvxPT] [limit]

ulimit provides control over the resources available to processes started by the
shell, on systems that allow such control. If an option is given, it is interpreted
as follows:

-S Change and report the soft limit associated with a resource.

-H Change and report the hard limit associated with a resource.

Chapter 4: Shell Builtin Commands 60

-a All current limits are reported.

-b The maximum socket buffer size.

-c The maximum size of core files created.

-d The maximum size of a process’s data segment.

-e The maximum scheduling priority ("nice").

-f The maximum size of files written by the shell and its children.

-i The maximum number of pending signals.

-k The maximum number of kqueues that may be allocated.

-l The maximum size that may be locked into memory.

-m The maximum resident set size (many systems do not honor this
limit).

-n The maximum number of open file descriptors (most systems do
not allow this value to be set).

-p The pipe buffer size.

-q The maximum number of bytes in POSIX message queues.

-r The maximum real-time scheduling priority.

-s The maximum stack size.

-t The maximum amount of cpu time in seconds.

-u The maximum number of processes available to a single user.

-v The maximum amount of virtual memory available to the shell,
and, on some systems, to its children.

-x The maximum number of file locks.

-P The maximum number of pseudoterminals.

-T The maximum number of threads.

If limit is given, and the -a option is not used, limit is the new value of the
specified resource. The special limit values hard, soft, and unlimited stand
for the current hard limit, the current soft limit, and no limit, respectively. A
hard limit cannot be increased by a non-root user once it is set; a soft limit
may be increased up to the value of the hard limit. Otherwise, the current
value of the soft limit for the specified resource is printed, unless the -H option
is supplied. When setting new limits, if neither -H nor -S is supplied, both the
hard and soft limits are set. If no option is given, then -f is assumed. Values
are in 1024-byte increments, except for -t, which is in seconds; -p, which is in
units of 512-byte blocks; -P, -T, -b, -k, -n and -u, which are unscaled values;
and, when in posix Mode (see Section 6.11 [Bash POSIX Mode], page 98), -c
and -f, which are in 512-byte increments.

The return status is zero unless an invalid option or argument is supplied, or
an error occurs while setting a new limit.

Chapter 4: Shell Builtin Commands 61

unalias

unalias [-a] [name ...]

Remove each name from the list of aliases. If -a is supplied, all aliases are
removed. Aliases are described in Section 6.6 [Aliases], page 92.

4.3 Modifying Shell Behavior

4.3.1 The Set Builtin

This builtin is so complicated that it deserves its own section. set allows you to change
the values of shell options and set the positional parameters, or to display the names and
values of shell variables.

set

set [--abefhkmnptuvxBCEHPT] [-o option-name] [argument ...]

set [+abefhkmnptuvxBCEHPT] [+o option-name] [argument ...]

If no options or arguments are supplied, set displays the names and values of all
shell variables and functions, sorted according to the current locale, in a format
that may be reused as input for setting or resetting the currently-set variables.
Read-only variables cannot be reset. In posix mode, only shell variables are
listed.

When options are supplied, they set or unset shell attributes. Options, if spec-
ified, have the following meanings:

-a Each variable or function that is created or modified is given the
export attribute and marked for export to the environment of sub-
sequent commands.

-b Cause the status of terminated background jobs to be reported
immediately, rather than before printing the next primary prompt.

-e Exit immediately if a pipeline (see Section 3.2.2 [Pipelines],
page 8), which may consist of a single simple command (see
Section 3.2.1 [Simple Commands], page 8), a list (see Section 3.2.3
[Lists], page 9), or a compound command (see Section 3.2.4
[Compound Commands], page 9) returns a non-zero status.
The shell does not exit if the command that fails is part of the
command list immediately following a while or until keyword,
part of the test in an if statement, part of any command
executed in a && or || list except the command following the
final && or ||, any command in a pipeline but the last, or if the
command’s return status is being inverted with !. If a compound
command other than a subshell returns a non-zero status because
a command failed while -e was being ignored, the shell does not
exit. A trap on ERR, if set, is executed before the shell exits.

This option applies to the shell environment and each subshell en-
vironment separately (see Section 3.7.3 [Command Execution En-
vironment], page 38), and may cause subshells to exit before exe-
cuting all the commands in the subshell.

Chapter 4: Shell Builtin Commands 62

If a compound command or shell function executes in a context
where -e is being ignored, none of the commands executed within
the compound command or function body will be affected by the
-e setting, even if -e is set and a command returns a failure status.
If a compound command or shell function sets -e while executing
in a context where -e is ignored, that setting will not have any
effect until the compound command or the command containing
the function call completes.

-f Disable filename expansion (globbing).

-h Locate and remember (hash) commands as they are looked up for
execution. This option is enabled by default.

-k All arguments in the form of assignment statements are placed in
the environment for a command, not just those that precede the
command name.

-m Job control is enabled (see Chapter 7 [Job Control], page 102). All
processes run in a separate process group. When a background job
completes, the shell prints a line containing its exit status.

-n Read commands but do not execute them. This may be used to
check a script for syntax errors. This option is ignored by interac-
tive shells.

-o option-name

Set the option corresponding to option-name:

allexport

Same as -a.

braceexpand

Same as -B.

emacs Use an emacs-style line editing interface (see Chapter 8
[Command Line Editing], page 106). This also affects
the editing interface used for read -e.

errexit Same as -e.

errtrace Same as -E.

functrace

Same as -T.

hashall Same as -h.

histexpand

Same as -H.

history Enable command history, as described in Section 9.1
[Bash History Facilities], page 140. This option is on
by default in interactive shells.

ignoreeof

An interactive shell will not exit upon reading EOF.

Chapter 4: Shell Builtin Commands 63

keyword Same as -k.

monitor Same as -m.

noclobber

Same as -C.

noexec Same as -n.

noglob Same as -f.

nolog Currently ignored.

notify Same as -b.

nounset Same as -u.

onecmd Same as -t.

physical Same as -P.

pipefail If set, the return value of a pipeline is the value of
the last (rightmost) command to exit with a non-zero
status, or zero if all commands in the pipeline exit suc-
cessfully. This option is disabled by default.

posix Change the behavior of Bash where the default opera-
tion differs from the posix standard to match the stan-
dard (see Section 6.11 [Bash POSIX Mode], page 98).
This is intended to make Bash behave as a strict su-
perset of that standard.

privileged

Same as -p.

verbose Same as -v.

vi Use a vi-style line editing interface. This also affects
the editing interface used for read -e.

xtrace Same as -x.

-p Turn on privileged mode. In this mode, the $BASH_ENV and $ENV

files are not processed, shell functions are not inherited from the en-
vironment, and the SHELLOPTS, BASHOPTS, CDPATH and GLOBIGNORE

variables, if they appear in the environment, are ignored. If the shell
is started with the effective user (group) id not equal to the real
user (group) id, and the -p option is not supplied, these actions
are taken and the effective user id is set to the real user id. If the
-p option is supplied at startup, the effective user id is not reset.
Turning this option off causes the effective user and group ids to
be set to the real user and group ids.

-t Exit after reading and executing one command.

-u Treat unset variables and parameters other than the special param-
eters ‘@’ or ‘*’ as an error when performing parameter expansion.

Chapter 4: Shell Builtin Commands 64

An error message will be written to the standard error, and a non-
interactive shell will exit.

-v Print shell input lines as they are read.

-x Print a trace of simple commands, for commands, case commands,
select commands, and arithmetic for commands and their argu-
ments or associated word lists after they are expanded and before
they are executed. The value of the PS4 variable is expanded and
the resultant value is printed before the command and its expanded
arguments.

-B The shell will perform brace expansion (see Section 3.5.1 [Brace
Expansion], page 22). This option is on by default.

-C Prevent output redirection using ‘>’, ‘>&’, and ‘<>’ from overwriting
existing files.

-E If set, any trap on ERR is inherited by shell functions, command
substitutions, and commands executed in a subshell environment.
The ERR trap is normally not inherited in such cases.

-H Enable ‘!’ style history substitution (see Section 9.3 [History In-
teraction], page 142). This option is on by default for interactive
shells.

-P If set, do not resolve symbolic links when performing commands
such as cd which change the current directory. The physical direc-
tory is used instead. By default, Bash follows the logical chain of
directories when performing commands which change the current
directory.

For example, if /usr/sys is a symbolic link to /usr/local/sys

then:

$ cd /usr/sys; echo $PWD

/usr/sys

$ cd ..; pwd

/usr

If set -P is on, then:

$ cd /usr/sys; echo $PWD

/usr/local/sys

$ cd ..; pwd

/usr/local

-T If set, any trap on DEBUG and RETURN are inherited by shell func-
tions, command substitutions, and commands executed in a sub-
shell environment. The DEBUG and RETURN traps are normally not
inherited in such cases.

-- If no arguments follow this option, then the positional parame-
ters are unset. Otherwise, the positional parameters are set to the
arguments, even if some of them begin with a ‘-’.

Chapter 4: Shell Builtin Commands 65

- Signal the end of options, cause all remaining arguments to be
assigned to the positional parameters. The -x and -v options are
turned off. If there are no arguments, the positional parameters
remain unchanged.

Using ‘+’ rather than ‘-’ causes these options to be turned off. The options can
also be used upon invocation of the shell. The current set of options may be
found in $-.

The remaining N arguments are positional parameters and are assigned, in
order, to $1, $2, . . . $N. The special parameter # is set to N.

The return status is always zero unless an invalid option is supplied.

4.3.2 The Shopt Builtin

This builtin allows you to change additional shell optional behavior.

shopt

shopt [-pqsu] [-o] [optname ...]

Toggle the values of settings controlling optional shell behavior. The settings
can be either those listed below, or, if the -o option is used, those available with
the -o option to the set builtin command (see Section 4.3.1 [The Set Builtin],
page 61). With no options, or with the -p option, a list of all settable options
is displayed, with an indication of whether or not each is set; if optnames are
supplied, the output is restricted to those options. The -p option causes output
to be displayed in a form that may be reused as input. Other options have the
following meanings:

-s Enable (set) each optname.

-u Disable (unset) each optname.

-q Suppresses normal output; the return status indicates whether the
optname is set or unset. If multiple optname arguments are given
with -q, the return status is zero if all optnames are enabled; non-
zero otherwise.

-o Restricts the values of optname to be those defined for the -o option
to the set builtin (see Section 4.3.1 [The Set Builtin], page 61).

If either -s or -u is used with no optname arguments, shopt shows only those
options which are set or unset, respectively.

Unless otherwise noted, the shopt options are disabled (off) by default.

The return status when listing options is zero if all optnames are enabled, non-
zero otherwise. When setting or unsetting options, the return status is zero
unless an optname is not a valid shell option.

The list of shopt options is:

assoc_expand_once

If set, the shell suppresses multiple evaluation of associative array
subscripts during arithmetic expression evaluation and while exe-
cuting builtins that can perform variable assignments.

Chapter 4: Shell Builtin Commands 66

autocd If set, a command name that is the name of a directory is executed
as if it were the argument to the cd command. This option is only
used by interactive shells.

cdable_vars

If this is set, an argument to the cd builtin command that is not
a directory is assumed to be the name of a variable whose value is
the directory to change to.

cdspell If set, minor errors in the spelling of a directory component in a cd

command will be corrected. The errors checked for are transposed
characters, a missing character, and a character too many. If a
correction is found, the corrected path is printed, and the command
proceeds. This option is only used by interactive shells.

checkhash

If this is set, Bash checks that a command found in the hash table
exists before trying to execute it. If a hashed command no longer
exists, a normal path search is performed.

checkjobs

If set, Bash lists the status of any stopped and running jobs before
exiting an interactive shell. If any jobs are running, this causes
the exit to be deferred until a second exit is attempted without an
intervening command (see Chapter 7 [Job Control], page 102). The
shell always postpones exiting if any jobs are stopped.

checkwinsize

If set, Bash checks the window size after each external (non-builtin)
command and, if necessary, updates the values of LINES and
COLUMNS.

cmdhist If set, Bash attempts to save all lines of a multiple-line command
in the same history entry. This allows easy re-editing of multi-line
commands. This option is enabled by default, but only has an
effect if command history is enabled (see Section 9.1 [Bash History
Facilities], page 140).

compat31 If set, Bash changes its behavior to that of version 3.1 with respect
to quoted arguments to the conditional command’s ‘=~’ operator
and with respect to locale-specific string comparison when using
the [[conditional command’s ‘<’ and ‘>’ operators. Bash versions
prior to bash-4.1 use ASCII collation and strcmp(3); bash-4.1 and
later use the current locale’s collation sequence and strcoll(3).

compat32 If set, Bash changes its behavior to that of version 3.2 with respect
to locale-specific string comparison when using the [[conditional
command’s ‘<’ and ‘>’ operators (see previous item) and the effect of
interrupting a command list. Bash versions 3.2 and earlier continue
with the next command in the list after one terminates due to an
interrupt.

Chapter 4: Shell Builtin Commands 67

compat40 If set, Bash changes its behavior to that of version 4.0 with respect
to locale-specific string comparison when using the [[conditional
command’s ‘<’ and ‘>’ operators (see description of compat31) and
the effect of interrupting a command list. Bash versions 4.0 and
later interrupt the list as if the shell received the interrupt; previous
versions continue with the next command in the list.

compat41 If set, Bash, when in posix mode, treats a single quote in a double-
quoted parameter expansion as a special character. The single
quotes must match (an even number) and the characters between
the single quotes are considered quoted. This is the behavior of
posix mode through version 4.1. The default Bash behavior re-
mains as in previous versions.

compat42 If set, Bash does not process the replacement string in the pattern
substitution word expansion using quote removal.

compat43 If set, Bash does not print a warning message if an attempt is made
to use a quoted compound array assignment as an argument to
declare, makes word expansion errors non-fatal errors that cause
the current command to fail (the default behavior is to make them
fatal errors that cause the shell to exit), and does not reset the
loop state when a shell function is executed (this allows break or
continue in a shell function to affect loops in the caller’s context).

compat44 If set, Bash saves the positional parameters to BASH ARGV and
BASH ARGC before they are used, regardless of whether or not
extended debugging mode is enabled.

complete_fullquote

If set, Bash quotes all shell metacharacters in filenames and direc-
tory names when performing completion. If not set, Bash removes
metacharacters such as the dollar sign from the set of characters
that will be quoted in completed filenames when these metachar-
acters appear in shell variable references in words to be completed.
This means that dollar signs in variable names that expand to di-
rectories will not be quoted; however, any dollar signs appearing in
filenames will not be quoted, either. This is active only when bash
is using backslashes to quote completed filenames. This variable
is set by default, which is the default Bash behavior in versions
through 4.2.

direxpand

If set, Bash replaces directory names with the results of word ex-
pansion when performing filename completion. This changes the
contents of the readline editing buffer. If not set, Bash attempts to
preserve what the user typed.

dirspell If set, Bash attempts spelling correction on directory names during
word completion if the directory name initially supplied does not
exist.

Chapter 4: Shell Builtin Commands 68

dotglob If set, Bash includes filenames beginning with a ‘.’ in the results
of filename expansion. The filenames ‘.’ and ‘..’ must always be
matched explicitly, even if dotglob is set.

execfail If this is set, a non-interactive shell will not exit if it cannot execute
the file specified as an argument to the exec builtin command. An
interactive shell does not exit if exec fails.

expand_aliases

If set, aliases are expanded as described below under Aliases,
Section 6.6 [Aliases], page 92. This option is enabled by default
for interactive shells.

extdebug If set at shell invocation, arrange to execute the debugger profile
before the shell starts, identical to the --debugger option. If set
after invocation, behavior intended for use by debuggers is enabled:

1. The -F option to the declare builtin (see Section 4.2 [Bash
Builtins], page 50) displays the source file name and line num-
ber corresponding to each function name supplied as an argu-
ment.

2. If the command run by the DEBUG trap returns a non-zero value,
the next command is skipped and not executed.

3. If the command run by the DEBUG trap returns a value of 2,
and the shell is executing in a subroutine (a shell function or
a shell script executed by the . or source builtins), the shell
simulates a call to return.

4. BASH_ARGC and BASH_ARGV are updated as described in their
descriptions (see Section 5.2 [Bash Variables], page 72).

5. Function tracing is enabled: command substitution, shell
functions, and subshells invoked with (command) inherit the
DEBUG and RETURN traps.

6. Error tracing is enabled: command substitution, shell func-
tions, and subshells invoked with (command) inherit the ERR

trap.

extglob If set, the extended pattern matching features described above (see
Section 3.5.8.1 [Pattern Matching], page 32) are enabled.

extquote If set, $’string’ and $"string" quoting is performed within
${parameter} expansions enclosed in double quotes. This option
is enabled by default.

failglob If set, patterns which fail to match filenames during filename ex-
pansion result in an expansion error.

force_fignore

If set, the suffixes specified by the FIGNORE shell variable cause
words to be ignored when performing word completion even if the
ignored words are the only possible completions. See Section 5.2

Chapter 4: Shell Builtin Commands 69

[Bash Variables], page 72, for a description of FIGNORE. This option
is enabled by default.

globasciiranges

If set, range expressions used in pattern matching bracket expres-
sions (see Section 3.5.8.1 [Pattern Matching], page 32) behave as if
in the traditional C locale when performing comparisons. That is,
the current locale’s collating sequence is not taken into account, so
‘b’ will not collate between ‘A’ and ‘B’, and upper-case and lower-
case ASCII characters will collate together.

globstar If set, the pattern ‘**’ used in a filename expansion context will
match all files and zero or more directories and subdirectories. If
the pattern is followed by a ‘/’, only directories and subdirectories
match.

gnu_errfmt

If set, shell error messages are written in the standard gnu error
message format.

histappend

If set, the history list is appended to the file named by the value of
the HISTFILE variable when the shell exits, rather than overwriting
the file.

histreedit

If set, and Readline is being used, a user is given the opportunity
to re-edit a failed history substitution.

histverify

If set, and Readline is being used, the results of history substitu-
tion are not immediately passed to the shell parser. Instead, the
resulting line is loaded into the Readline editing buffer, allowing
further modification.

hostcomplete

If set, and Readline is being used, Bash will attempt to perform
hostname completion when a word containing a ‘@’ is being com-
pleted (see Section 8.4.6 [Commands For Completion], page 126).
This option is enabled by default.

huponexit

If set, Bash will send SIGHUP to all jobs when an interactive login
shell exits (see Section 3.7.6 [Signals], page 40).

inherit_errexit

If set, command substitution inherits the value of the errexit op-
tion, instead of unsetting it in the subshell environment. This op-
tion is enabled when posix mode is enabled.

Chapter 4: Shell Builtin Commands 70

interactive_comments

Allow a word beginning with ‘#’ to cause that word and all remain-
ing characters on that line to be ignored in an interactive shell.
This option is enabled by default.

lastpipe If set, and job control is not active, the shell runs the last command
of a pipeline not executed in the background in the current shell
environment.

lithist If enabled, and the cmdhist option is enabled, multi-line commands
are saved to the history with embedded newlines rather than using
semicolon separators where possible.

localvar_inherit

If set, local variables inherit the value and attributes of a variable
of the same name that exists at a previous scope before any new
value is assigned. The nameref attribute is not inherited.

login_shell

The shell sets this option if it is started as a login shell (see
Section 6.1 [Invoking Bash], page 84). The value may not be
changed.

mailwarn If set, and a file that Bash is checking for mail has been accessed
since the last time it was checked, the message "The mail in mail-

file has been read" is displayed.

no_empty_cmd_completion

If set, and Readline is being used, Bash will not attempt to search
the PATH for possible completions when completion is attempted on
an empty line.

nocaseglob

If set, Bash matches filenames in a case-insensitive fashion when
performing filename expansion.

nocasematch

If set, Bash matches patterns in a case-insensitive fashion when
performing matching while executing case or [[conditional com-
mands, when performing pattern substitution word expansions, or
when filtering possible completions as part of programmable com-
pletion.

nullglob If set, Bash allows filename patterns which match no files to expand
to a null string, rather than themselves.

progcomp If set, the programmable completion facilities (see Section 8.6 [Pro-
grammable Completion], page 131) are enabled. This option is
enabled by default.

promptvars

If set, prompt strings undergo parameter expansion, command
substitution, arithmetic expansion, and quote removal after being

Chapter 4: Shell Builtin Commands 71

expanded as described below (see Section 6.9 [Controlling the
Prompt], page 96). This option is enabled by default.

restricted_shell

The shell sets this option if it is started in restricted mode (see
Section 6.10 [The Restricted Shell], page 97). The value may not
be changed. This is not reset when the startup files are executed,
allowing the startup files to discover whether or not a shell is re-
stricted.

shift_verbose

If this is set, the shift builtin prints an error message when the
shift count exceeds the number of positional parameters.

sourcepath

If set, the source builtin uses the value of PATH to find the directory
containing the file supplied as an argument. This option is enabled
by default.

xpg_echo If set, the echo builtin expands backslash-escape sequences by de-
fault.

The return status when listing options is zero if all optnames are enabled, non-
zero otherwise. When setting or unsetting options, the return status is zero
unless an optname is not a valid shell option.

4.4 Special Builtins

For historical reasons, the posix standard has classified several builtin commands as spe-
cial. When Bash is executing in posix mode, the special builtins differ from other builtin
commands in three respects:

1. Special builtins are found before shell functions during command lookup.

2. If a special builtin returns an error status, a non-interactive shell exits.

3. Assignment statements preceding the command stay in effect in the shell environment
after the command completes.

When Bash is not executing in posix mode, these builtins behave no differently than
the rest of the Bash builtin commands. The Bash posix mode is described in Section 6.11
[Bash POSIX Mode], page 98.

These are the posix special builtins:

break : . continue eval exec exit export readonly return set

shift trap unset

72

5 Shell Variables

This chapter describes the shell variables that Bash uses. Bash automatically assigns default
values to a number of variables.

5.1 Bourne Shell Variables

Bash uses certain shell variables in the same way as the Bourne shell. In some cases, Bash
assigns a default value to the variable.

CDPATH A colon-separated list of directories used as a search path for the cd builtin
command.

HOME The current user’s home directory; the default for the cd builtin command. The
value of this variable is also used by tilde expansion (see Section 3.5.2 [Tilde
Expansion], page 23).

IFS A list of characters that separate fields; used when the shell splits words as part
of expansion.

MAIL If this parameter is set to a filename or directory name and the MAILPATH

variable is not set, Bash informs the user of the arrival of mail in the specified
file or Maildir-format directory.

MAILPATH A colon-separated list of filenames which the shell periodically checks for new
mail. Each list entry can specify the message that is printed when new mail
arrives in the mail file by separating the filename from the message with a ‘?’.
When used in the text of the message, $_ expands to the name of the current
mail file.

OPTARG The value of the last option argument processed by the getopts builtin.

OPTIND The index of the last option argument processed by the getopts builtin.

PATH A colon-separated list of directories in which the shell looks for commands. A
zero-length (null) directory name in the value of PATH indicates the current
directory. A null directory name may appear as two adjacent colons, or as an
initial or trailing colon.

PS1 The primary prompt string. The default value is ‘\s-\v\$ ’. See Section 6.9
[Controlling the Prompt], page 96, for the complete list of escape sequences
that are expanded before PS1 is displayed.

PS2 The secondary prompt string. The default value is ‘> ’. PS2 is expanded in the
same way as PS1 before being displayed.

5.2 Bash Variables

These variables are set or used by Bash, but other shells do not normally treat them
specially.

A few variables used by Bash are described in different chapters: variables for controlling
the job control facilities (see Section 7.3 [Job Control Variables], page 105).

BASH The full pathname used to execute the current instance of Bash.

Chapter 5: Shell Variables 73

BASHOPTS A colon-separated list of enabled shell options. Each word in the list is a valid
argument for the -s option to the shopt builtin command (see Section 4.3.2
[The Shopt Builtin], page 65). The options appearing in BASHOPTS are those
reported as ‘on’ by ‘shopt’. If this variable is in the environment when Bash
starts up, each shell option in the list will be enabled before reading any startup
files. This variable is readonly.

BASHPID Expands to the process ID of the current Bash process. This differs from $$

under certain circumstances, such as subshells that do not require Bash to be
re-initialized. Assignments to BASHPID have no effect. If BASHPID is unset, it
loses its special properties, even if it is subsequently reset.

BASH_ALIASES

An associative array variable whose members correspond to the internal list
of aliases as maintained by the alias builtin. (see Section 4.1 [Bourne Shell
Builtins], page 43). Elements added to this array appear in the alias list; how-
ever, unsetting array elements currently does not cause aliases to be removed
from the alias list. If BASH_ALIASES is unset, it loses its special properties, even
if it is subsequently reset.

BASH_ARGC

An array variable whose values are the number of parameters in each frame
of the current bash execution call stack. The number of parameters to the
current subroutine (shell function or script executed with . or source) is at
the top of the stack. When a subroutine is executed, the number of parameters
passed is pushed onto BASH_ARGC. The shell sets BASH_ARGC only when in
extended debugging mode (see Section 4.3.2 [The Shopt Builtin], page 65, for
a description of the extdebug option to the shopt builtin). Setting extdebug

after the shell has started to execute a script may result in inconsistent values.

BASH_ARGV

An array variable containing all of the parameters in the current bash execution
call stack. The final parameter of the last subroutine call is at the top of the
stack; the first parameter of the initial call is at the bottom. When a subroutine
is executed, the parameters supplied are pushed onto BASH_ARGV. The shell
sets BASH_ARGV only when in extended debugging mode (see Section 4.3.2 [The
Shopt Builtin], page 65, for a description of the extdebug option to the shopt
builtin). Setting extdebug after the shell has started to execute a script may
result in inconsistent values.

BASH_ARGV0

When referenced, this variable expands to the name of the shell or shell script
(identical to $0; See Section 3.4.2 [Special Parameters], page 21, for the de-
scription of special parameter 0). Assignment to BASH_ARGV0 causes the value
assigned to also be assigned to $0. If BASH_ARGV0 is unset, it loses its special
properties, even if it is subsequently reset.

BASH_CMDS

An associative array variable whose members correspond to the internal hash
table of commands as maintained by the hash builtin (see Section 4.1 [Bourne

Chapter 5: Shell Variables 74

Shell Builtins], page 43). Elements added to this array appear in the hash
table; however, unsetting array elements currently does not cause command
names to be removed from the hash table. If BASH_CMDS is unset, it loses its
special properties, even if it is subsequently reset.

BASH_COMMAND

The command currently being executed or about to be executed, unless the
shell is executing a command as the result of a trap, in which case it is the
command executing at the time of the trap.

BASH_COMPAT

The value is used to set the shell’s compatibility level. See Section 4.3.2 [The
Shopt Builtin], page 65, for a description of the various compatibility levels
and their effects. The value may be a decimal number (e.g., 4.2) or an integer
(e.g., 42) corresponding to the desired compatibility level. If BASH_COMPAT is
unset or set to the empty string, the compatibility level is set to the default
for the current version. If BASH_COMPAT is set to a value that is not one of
the valid compatibility levels, the shell prints an error message and sets the
compatibility level to the default for the current version. The valid compatibility
levels correspond to the compatibility options accepted by the shopt builtin
described above (for example, compat42 means that 4.2 and 42 are valid values).
The current version is also a valid value.

BASH_ENV If this variable is set when Bash is invoked to execute a shell script, its value is
expanded and used as the name of a startup file to read before executing the
script. See Section 6.2 [Bash Startup Files], page 86.

BASH_EXECUTION_STRING

The command argument to the -c invocation option.

BASH_LINENO

An array variable whose members are the line numbers in source files
where each corresponding member of FUNCNAME was invoked. ${BASH_

LINENO[$i]} is the line number in the source file (${BASH_SOURCE[$i+1]})
where ${FUNCNAME[$i]} was called (or ${BASH_LINENO[$i-1]} if referenced
within another shell function). Use LINENO to obtain the current line number.

BASH_LOADABLES_PATH

A colon-separated list of directories in which the shell looks for dynamically
loadable builtins specified by the enable command.

BASH_REMATCH

An array variable whose members are assigned by the ‘=~’ binary operator
to the [[conditional command (see Section 3.2.4.2 [Conditional Constructs],
page 11). The element with index 0 is the portion of the string matching the
entire regular expression. The element with index n is the portion of the string
matching the nth parenthesized subexpression. This variable is read-only.

BASH_SOURCE

An array variable whose members are the source filenames where the corre-
sponding shell function names in the FUNCNAME array variable are defined. The

Chapter 5: Shell Variables 75

shell function ${FUNCNAME[$i]} is defined in the file ${BASH_SOURCE[$i]} and
called from ${BASH_SOURCE[$i+1]}

BASH_SUBSHELL

Incremented by one within each subshell or subshell environment when the shell
begins executing in that environment. The initial value is 0.

BASH_VERSINFO

A readonly array variable (see Section 6.7 [Arrays], page 93) whose members
hold version information for this instance of Bash. The values assigned to the
array members are as follows:

BASH_VERSINFO[0]

The major version number (the release).

BASH_VERSINFO[1]

The minor version number (the version).

BASH_VERSINFO[2]

The patch level.

BASH_VERSINFO[3]

The build version.

BASH_VERSINFO[4]

The release status (e.g., beta1).

BASH_VERSINFO[5]

The value of MACHTYPE.

BASH_VERSION

The version number of the current instance of Bash.

BASH_XTRACEFD

If set to an integer corresponding to a valid file descriptor, Bash will write the
trace output generated when ‘set -x’ is enabled to that file descriptor. This
allows tracing output to be separated from diagnostic and error messages. The
file descriptor is closed when BASH_XTRACEFD is unset or assigned a new value.
Unsetting BASH_XTRACEFD or assigning it the empty string causes the trace
output to be sent to the standard error. Note that setting BASH_XTRACEFD to
2 (the standard error file descriptor) and then unsetting it will result in the
standard error being closed.

CHILD_MAX

Set the number of exited child status values for the shell to remember. Bash
will not allow this value to be decreased below a posix-mandated minimum,
and there is a maximum value (currently 8192) that this may not exceed. The
minimum value is system-dependent.

COLUMNS Used by the select command to determine the terminal width when printing
selection lists. Automatically set if the checkwinsize option is enabled (see
Section 4.3.2 [The Shopt Builtin], page 65), or in an interactive shell upon
receipt of a SIGWINCH.

Chapter 5: Shell Variables 76

COMP_CWORD

An index into ${COMP_WORDS} of the word containing the current cursor po-
sition. This variable is available only in shell functions invoked by the pro-
grammable completion facilities (see Section 8.6 [Programmable Completion],
page 131).

COMP_LINE

The current command line. This variable is available only in shell functions
and external commands invoked by the programmable completion facilities (see
Section 8.6 [Programmable Completion], page 131).

COMP_POINT

The index of the current cursor position relative to the beginning of the current
command. If the current cursor position is at the end of the current command,
the value of this variable is equal to ${#COMP_LINE}. This variable is available
only in shell functions and external commands invoked by the programmable
completion facilities (see Section 8.6 [Programmable Completion], page 131).

COMP_TYPE

Set to an integer value corresponding to the type of completion attempted that
caused a completion function to be called: TAB, for normal completion, ‘?’, for
listing completions after successive tabs, ‘!’, for listing alternatives on partial
word completion, ‘@’, to list completions if the word is not unmodified, or ‘%’, for
menu completion. This variable is available only in shell functions and external
commands invoked by the programmable completion facilities (see Section 8.6
[Programmable Completion], page 131).

COMP_KEY The key (or final key of a key sequence) used to invoke the current completion
function.

COMP_WORDBREAKS

The set of characters that the Readline library treats as word separators when
performing word completion. If COMP_WORDBREAKS is unset, it loses its special
properties, even if it is subsequently reset.

COMP_WORDS

An array variable consisting of the individual words in the current command
line. The line is split into words as Readline would split it, using COMP_

WORDBREAKS as described above. This variable is available only in shell func-
tions invoked by the programmable completion facilities (see Section 8.6 [Pro-
grammable Completion], page 131).

COMPREPLY

An array variable from which Bash reads the possible completions generated
by a shell function invoked by the programmable completion facility (see
Section 8.6 [Programmable Completion], page 131). Each array element
contains one possible completion.

COPROC An array variable created to hold the file descriptors for output from and input
to an unnamed coprocess (see Section 3.2.5 [Coprocesses], page 15).

DIRSTACK An array variable containing the current contents of the directory stack. Direc-
tories appear in the stack in the order they are displayed by the dirs builtin.

Chapter 5: Shell Variables 77

Assigning to members of this array variable may be used to modify directories
already in the stack, but the pushd and popd builtins must be used to add
and remove directories. Assignment to this variable will not change the cur-
rent directory. If DIRSTACK is unset, it loses its special properties, even if it is
subsequently reset.

EMACS If Bash finds this variable in the environment when the shell starts with value
‘t’, it assumes that the shell is running in an Emacs shell buffer and disables
line editing.

ENV Similar to BASH_ENV; used when the shell is invoked in posix Mode (see
Section 6.11 [Bash POSIX Mode], page 98).

EPOCHREALTIME

Each time this parameter is referenced, it expands to the number of seconds
since the Unix Epoch as a floating point value with micro-second granularity
(see the documentation for the C library function time for the definition of
Epoch). Assignments to EPOCHREALTIME are ignored. If EPOCHREALTIME is
unset, it loses its special properties, even if it is subsequently reset.

EPOCHSECONDS

Each time this parameter is referenced, it expands to the number of seconds
since the Unix Epoch (see the documentation for the C library function time
for the definition of Epoch). Assignments to EPOCHSECONDS are ignored. If
EPOCHSECONDS is unset, it loses its special properties, even if it is subsequently
reset.

EUID The numeric effective user id of the current user. This variable is readonly.

EXECIGNORE

A colon-separated list of shell patterns (see Section 3.5.8.1 [Pattern Matching],
page 32) defining the list of filenames to be ignored by command search using
PATH. Files whose full pathnames match one of these patterns are not considered
executable files for the purposes of completion and command execution via PATH
lookup. This does not affect the behavior of the [, test, and [[commands.
Full pathnames in the command hash table are not subject to EXECIGNORE.
Use this variable to ignore shared library files that have the executable bit set,
but are not executable files. The pattern matching honors the setting of the
extglob shell option.

FCEDIT The editor used as a default by the -e option to the fc builtin command.

FIGNORE A colon-separated list of suffixes to ignore when performing filename comple-
tion. A filename whose suffix matches one of the entries in FIGNORE is excluded
from the list of matched filenames. A sample value is ‘.o:~’

FUNCNAME An array variable containing the names of all shell functions currently in the
execution call stack. The element with index 0 is the name of any currently-
executing shell function. The bottom-most element (the one with the highest
index) is "main". This variable exists only when a shell function is executing.
Assignments to FUNCNAME have no effect. If FUNCNAME is unset, it loses its special
properties, even if it is subsequently reset.

Chapter 5: Shell Variables 78

This variable can be used with BASH_LINENO and BASH_SOURCE. Each element
of FUNCNAME has corresponding elements in BASH_LINENO and BASH_SOURCE to
describe the call stack. For instance, ${FUNCNAME[$i]} was called from the
file ${BASH_SOURCE[$i+1]} at line number ${BASH_LINENO[$i]}. The caller
builtin displays the current call stack using this information.

FUNCNEST If set to a numeric value greater than 0, defines a maximum function nesting
level. Function invocations that exceed this nesting level will cause the current
command to abort.

GLOBIGNORE

A colon-separated list of patterns defining the set of file names to be ignored
by filename expansion. If a file name matched by a filename expansion pattern
also matches one of the patterns in GLOBIGNORE, it is removed from the list of
matches. The pattern matching honors the setting of the extglob shell option.

GROUPS An array variable containing the list of groups of which the current user is a
member. Assignments to GROUPS have no effect. If GROUPS is unset, it loses its
special properties, even if it is subsequently reset.

histchars

Up to three characters which control history expansion, quick substitution, and
tokenization (see Section 9.3 [History Interaction], page 142). The first charac-
ter is the history expansion character, that is, the character which signifies the
start of a history expansion, normally ‘!’. The second character is the character
which signifies ‘quick substitution’ when seen as the first character on a line,
normally ‘^’. The optional third character is the character which indicates that
the remainder of the line is a comment when found as the first character of a
word, usually ‘#’. The history comment character causes history substitution
to be skipped for the remaining words on the line. It does not necessarily cause
the shell parser to treat the rest of the line as a comment.

HISTCMD The history number, or index in the history list, of the current command. If
HISTCMD is unset, it loses its special properties, even if it is subsequently reset.

HISTCONTROL

A colon-separated list of values controlling how commands are saved on the
history list. If the list of values includes ‘ignorespace’, lines which begin with
a space character are not saved in the history list. A value of ‘ignoredups’
causes lines which match the previous history entry to not be saved. A value
of ‘ignoreboth’ is shorthand for ‘ignorespace’ and ‘ignoredups’. A value of
‘erasedups’ causes all previous lines matching the current line to be removed
from the history list before that line is saved. Any value not in the above
list is ignored. If HISTCONTROL is unset, or does not include a valid value, all
lines read by the shell parser are saved on the history list, subject to the value
of HISTIGNORE. The second and subsequent lines of a multi-line compound
command are not tested, and are added to the history regardless of the value
of HISTCONTROL.

HISTFILE The name of the file to which the command history is saved. The default value
is ~/.bash_history.

Chapter 5: Shell Variables 79

HISTFILESIZE

The maximum number of lines contained in the history file. When this variable
is assigned a value, the history file is truncated, if necessary, to contain no more
than that number of lines by removing the oldest entries. The history file is
also truncated to this size after writing it when a shell exits. If the value is
0, the history file is truncated to zero size. Non-numeric values and numeric
values less than zero inhibit truncation. The shell sets the default value to the
value of HISTSIZE after reading any startup files.

HISTIGNORE

A colon-separated list of patterns used to decide which command lines should
be saved on the history list. Each pattern is anchored at the beginning of the
line and must match the complete line (no implicit ‘*’ is appended). Each
pattern is tested against the line after the checks specified by HISTCONTROL

are applied. In addition to the normal shell pattern matching characters, ‘&’
matches the previous history line. ‘&’ may be escaped using a backslash; the
backslash is removed before attempting a match. The second and subsequent
lines of a multi-line compound command are not tested, and are added to the
history regardless of the value of HISTIGNORE. The pattern matching honors
the setting of the extglob shell option.

HISTIGNORE subsumes the function of HISTCONTROL. A pattern of ‘&’ is identical
to ignoredups, and a pattern of ‘[]*’ is identical to ignorespace. Combining
these two patterns, separating them with a colon, provides the functionality of
ignoreboth.

HISTSIZE The maximum number of commands to remember on the history list. If the
value is 0, commands are not saved in the history list. Numeric values less than
zero result in every command being saved on the history list (there is no limit).
The shell sets the default value to 500 after reading any startup files.

HISTTIMEFORMAT

If this variable is set and not null, its value is used as a format string for
strftime to print the time stamp associated with each history entry displayed
by the history builtin. If this variable is set, time stamps are written to the
history file so they may be preserved across shell sessions. This uses the history
comment character to distinguish timestamps from other history lines.

HOSTFILE Contains the name of a file in the same format as /etc/hosts that should be
read when the shell needs to complete a hostname. The list of possible hostname
completions may be changed while the shell is running; the next time hostname
completion is attempted after the value is changed, Bash adds the contents of
the new file to the existing list. If HOSTFILE is set, but has no value, or does
not name a readable file, Bash attempts to read /etc/hosts to obtain the list
of possible hostname completions. When HOSTFILE is unset, the hostname list
is cleared.

HOSTNAME The name of the current host.

HOSTTYPE A string describing the machine Bash is running on.

Chapter 5: Shell Variables 80

IGNOREEOF

Controls the action of the shell on receipt of an EOF character as the sole input.
If set, the value denotes the number of consecutive EOF characters that can be
read as the first character on an input line before the shell will exit. If the
variable exists but does not have a numeric value (or has no value) then the
default is 10. If the variable does not exist, then EOF signifies the end of input
to the shell. This is only in effect for interactive shells.

INPUTRC The name of the Readline initialization file, overriding the default of
~/.inputrc.

LANG Used to determine the locale category for any category not specifically selected
with a variable starting with LC_.

LC_ALL This variable overrides the value of LANG and any other LC_ variable specifying
a locale category.

LC_COLLATE

This variable determines the collation order used when sorting the results of
filename expansion, and determines the behavior of range expressions, equiv-
alence classes, and collating sequences within filename expansion and pattern
matching (see Section 3.5.8 [Filename Expansion], page 31).

LC_CTYPE This variable determines the interpretation of characters and the behavior
of character classes within filename expansion and pattern matching (see
Section 3.5.8 [Filename Expansion], page 31).

LC_MESSAGES

This variable determines the locale used to translate double-quoted strings pre-
ceded by a ‘$’ (see Section 3.1.2.5 [Locale Translation], page 7).

LC_NUMERIC

This variable determines the locale category used for number formatting.

LC_TIME This variable determines the locale category used for data and time formatting.

LINENO The line number in the script or shell function currently executing.

LINES Used by the select command to determine the column length for printing
selection lists. Automatically set if the checkwinsize option is enabled (see
Section 4.3.2 [The Shopt Builtin], page 65), or in an interactive shell upon
receipt of a SIGWINCH.

MACHTYPE A string that fully describes the system type on which Bash is executing, in the
standard gnu cpu-company-system format.

MAILCHECK

How often (in seconds) that the shell should check for mail in the files specified
in the MAILPATH or MAIL variables. The default is 60 seconds. When it is time
to check for mail, the shell does so before displaying the primary prompt. If
this variable is unset, or set to a value that is not a number greater than or
equal to zero, the shell disables mail checking.

MAPFILE An array variable created to hold the text read by the mapfile builtin when
no variable name is supplied.

Chapter 5: Shell Variables 81

OLDPWD The previous working directory as set by the cd builtin.

OPTERR If set to the value 1, Bash displays error messages generated by the getopts

builtin command.

OSTYPE A string describing the operating system Bash is running on.

PIPESTATUS

An array variable (see Section 6.7 [Arrays], page 93) containing a list of exit sta-
tus values from the processes in the most-recently-executed foreground pipeline
(which may contain only a single command).

POSIXLY_CORRECT

If this variable is in the environment when Bash starts, the shell enters posix
mode (see Section 6.11 [Bash POSIX Mode], page 98) before reading the startup
files, as if the --posix invocation option had been supplied. If it is set while
the shell is running, Bash enables posix mode, as if the command

set -o posix

had been executed.

PPID The process id of the shell’s parent process. This variable is readonly.

PROMPT_COMMAND

If set, the value is interpreted as a command to execute before the printing of
each primary prompt ($PS1).

PROMPT_DIRTRIM

If set to a number greater than zero, the value is used as the number of trailing
directory components to retain when expanding the \w and \W prompt string
escapes (see Section 6.9 [Controlling the Prompt], page 96). Characters removed
are replaced with an ellipsis.

PS0 The value of this parameter is expanded like PS1 and displayed by interactive
shells after reading a command and before the command is executed.

PS3 The value of this variable is used as the prompt for the select command. If
this variable is not set, the select command prompts with ‘#? ’

PS4 The value of this parameter is expanded like PS1 and the expanded value is
the prompt printed before the command line is echoed when the -x option is
set (see Section 4.3.1 [The Set Builtin], page 61). The first character of the
expanded value is replicated multiple times, as necessary, to indicate multiple
levels of indirection. The default is ‘+ ’.

PWD The current working directory as set by the cd builtin.

RANDOM Each time this parameter is referenced, a random integer between 0 and 32767
is generated. Assigning a value to this variable seeds the random number gen-
erator.

READLINE_LINE

The contents of the Readline line buffer, for use with ‘bind -x’ (see Section 4.2
[Bash Builtins], page 50).

Chapter 5: Shell Variables 82

READLINE_POINT

The position of the insertion point in the Readline line buffer, for use with ‘bind
-x’ (see Section 4.2 [Bash Builtins], page 50).

REPLY The default variable for the read builtin.

SECONDS This variable expands to the number of seconds since the shell was started.
Assignment to this variable resets the count to the value assigned, and the
expanded value becomes the value assigned plus the number of seconds since
the assignment.

SHELL The full pathname to the shell is kept in this environment variable. If it is not
set when the shell starts, Bash assigns to it the full pathname of the current
user’s login shell.

SHELLOPTS

A colon-separated list of enabled shell options. Each word in the list is a valid
argument for the -o option to the set builtin command (see Section 4.3.1 [The
Set Builtin], page 61). The options appearing in SHELLOPTS are those reported
as ‘on’ by ‘set -o’. If this variable is in the environment when Bash starts up,
each shell option in the list will be enabled before reading any startup files.
This variable is readonly.

SHLVL Incremented by one each time a new instance of Bash is started. This is intended
to be a count of how deeply your Bash shells are nested.

TIMEFORMAT

The value of this parameter is used as a format string specifying how the tim-
ing information for pipelines prefixed with the time reserved word should be
displayed. The ‘%’ character introduces an escape sequence that is expanded to
a time value or other information. The escape sequences and their meanings
are as follows; the braces denote optional portions.

%% A literal ‘%’.

%[p][l]R The elapsed time in seconds.

%[p][l]U The number of CPU seconds spent in user mode.

%[p][l]S The number of CPU seconds spent in system mode.

%P The CPU percentage, computed as (%U + %S) / %R.

The optional p is a digit specifying the precision, the number of fractional digits
after a decimal point. A value of 0 causes no decimal point or fraction to be
output. At most three places after the decimal point may be specified; values
of p greater than 3 are changed to 3. If p is not specified, the value 3 is used.

The optional l specifies a longer format, including minutes, of the form
MMmSS.FFs. The value of p determines whether or not the fraction is
included.

If this variable is not set, Bash acts as if it had the value

$’\nreal\t%3lR\nuser\t%3lU\nsys\t%3lS’

If the value is null, no timing information is displayed. A trailing newline is
added when the format string is displayed.

Chapter 5: Shell Variables 83

TMOUT If set to a value greater than zero, TMOUT is treated as the default timeout for the
read builtin (see Section 4.2 [Bash Builtins], page 50). The select command
(see Section 3.2.4.2 [Conditional Constructs], page 11) terminates if input does
not arrive after TMOUT seconds when input is coming from a terminal.

In an interactive shell, the value is interpreted as the number of seconds to
wait for a line of input after issuing the primary prompt. Bash terminates after
waiting for that number of seconds if a complete line of input does not arrive.

TMPDIR If set, Bash uses its value as the name of a directory in which Bash creates
temporary files for the shell’s use.

UID The numeric real user id of the current user. This variable is readonly.

84

6 Bash Features

This chapter describes features unique to Bash.

6.1 Invoking Bash

bash [long-opt] [-ir] [-abefhkmnptuvxdBCDHP] [-o option] [-O shopt_option] [ar-

gument ...]

bash [long-opt] [-abefhkmnptuvxdBCDHP] [-o option] [-O shopt_option] -c string [ar-

gument ...]

bash [long-opt] -s [-abefhkmnptuvxdBCDHP] [-o option] [-O shopt_option] [ar-

gument ...]

All of the single-character options used with the set builtin (see Section 4.3.1 [The Set
Builtin], page 61) can be used as options when the shell is invoked. In addition, there
are several multi-character options that you can use. These options must appear on the
command line before the single-character options to be recognized.

--debugger

Arrange for the debugger profile to be executed before the shell starts. Turns
on extended debugging mode (see Section 4.3.2 [The Shopt Builtin], page 65,
for a description of the extdebug option to the shopt builtin).

--dump-po-strings

A list of all double-quoted strings preceded by ‘$’ is printed on the standard
output in the gnu gettext PO (portable object) file format. Equivalent to -D

except for the output format.

--dump-strings

Equivalent to -D.

--help Display a usage message on standard output and exit successfully.

--init-file filename

--rcfile filename

Execute commands from filename (instead of ~/.bashrc) in an interactive shell.

--login Equivalent to -l.

--noediting

Do not use the gnu Readline library (see Chapter 8 [Command Line Editing],
page 106) to read command lines when the shell is interactive.

--noprofile

Don’t load the system-wide startup file /etc/profile or any of the personal ini-
tialization files ~/.bash_profile, ~/.bash_login, or ~/.profile when Bash
is invoked as a login shell.

--norc Don’t read the ~/.bashrc initialization file in an interactive shell. This is on
by default if the shell is invoked as sh.

--posix Change the behavior of Bash where the default operation differs from the posix
standard to match the standard. This is intended to make Bash behave as a
strict superset of that standard. See Section 6.11 [Bash POSIX Mode], page 98,
for a description of the Bash posix mode.

Chapter 6: Bash Features 85

--restricted

Make the shell a restricted shell (see Section 6.10 [The Restricted Shell],
page 97).

--verbose

Equivalent to -v. Print shell input lines as they’re read.

--version

Show version information for this instance of Bash on the standard output and
exit successfully.

There are several single-character options that may be supplied at invocation which are
not available with the set builtin.

-c Read and execute commands from the first non-option argument com-
mand string, then exit. If there are arguments after the command string, the
first argument is assigned to $0 and any remaining arguments are assigned to
the positional parameters. The assignment to $0 sets the name of the shell,
which is used in warning and error messages.

-i Force the shell to run interactively. Interactive shells are described in Section 6.3
[Interactive Shells], page 87.

-l Make this shell act as if it had been directly invoked by login. When the shell
is interactive, this is equivalent to starting a login shell with ‘exec -l bash’.
When the shell is not interactive, the login shell startup files will be executed.
‘exec bash -l’ or ‘exec bash --login’ will replace the current shell with a
Bash login shell. See Section 6.2 [Bash Startup Files], page 86, for a description
of the special behavior of a login shell.

-r Make the shell a restricted shell (see Section 6.10 [The Restricted Shell],
page 97).

-s If this option is present, or if no arguments remain after option processing, then
commands are read from the standard input. This option allows the positional
parameters to be set when invoking an interactive shell or when reading input
through a pipe.

-D A list of all double-quoted strings preceded by ‘$’ is printed on the standard
output. These are the strings that are subject to language translation when
the current locale is not C or POSIX (see Section 3.1.2.5 [Locale Translation],
page 7). This implies the -n option; no commands will be executed.

[-+]O [shopt_option]

shopt option is one of the shell options accepted by the shopt builtin (see
Section 4.3.2 [The Shopt Builtin], page 65). If shopt option is present, -O sets
the value of that option; +O unsets it. If shopt option is not supplied, the names
and values of the shell options accepted by shopt are printed on the standard
output. If the invocation option is +O, the output is displayed in a format that
may be reused as input.

-- A -- signals the end of options and disables further option processing. Any
arguments after the -- are treated as filenames and arguments.

Chapter 6: Bash Features 86

A login shell is one whose first character of argument zero is ‘-’, or one invoked with the
--login option.

An interactive shell is one started without non-option arguments, unless -s is specified,
without specifying the -c option, and whose input and output are both connected to ter-
minals (as determined by isatty(3)), or one started with the -i option. See Section 6.3
[Interactive Shells], page 87, for more information.

If arguments remain after option processing, and neither the -c nor the -s option has
been supplied, the first argument is assumed to be the name of a file containing shell
commands (see Section 3.8 [Shell Scripts], page 41). When Bash is invoked in this fashion,
$0 is set to the name of the file, and the positional parameters are set to the remaining
arguments. Bash reads and executes commands from this file, then exits. Bash’s exit status
is the exit status of the last command executed in the script. If no commands are executed,
the exit status is 0.

6.2 Bash Startup Files

This section describes how Bash executes its startup files. If any of the files exist but cannot
be read, Bash reports an error. Tildes are expanded in filenames as described above under
Tilde Expansion (see Section 3.5.2 [Tilde Expansion], page 23).

Interactive shells are described in Section 6.3 [Interactive Shells], page 87.

Invoked as an interactive login shell, or with --login

When Bash is invoked as an interactive login shell, or as a non-interactive shell with the
--login option, it first reads and executes commands from the file /etc/profile, if that
file exists. After reading that file, it looks for ~/.bash_profile, ~/.bash_login, and
~/.profile, in that order, and reads and executes commands from the first one that exists
and is readable. The --noprofile option may be used when the shell is started to inhibit
this behavior.

When an interactive login shell exits, or a non-interactive login shell executes the exit

builtin command, Bash reads and executes commands from the file ~/.bash_logout, if it
exists.

Invoked as an interactive non-login shell

When an interactive shell that is not a login shell is started, Bash reads and executes
commands from ~/.bashrc, if that file exists. This may be inhibited by using the --norc

option. The --rcfile file option will force Bash to read and execute commands from file
instead of ~/.bashrc.

So, typically, your ~/.bash_profile contains the line

if [-f ~/.bashrc]; then . ~/.bashrc; fi

after (or before) any login-specific initializations.

Invoked non-interactively

When Bash is started non-interactively, to run a shell script, for example, it looks for the
variable BASH_ENV in the environment, expands its value if it appears there, and uses the

Chapter 6: Bash Features 87

expanded value as the name of a file to read and execute. Bash behaves as if the following
command were executed:

if [-n "$BASH_ENV"]; then . "$BASH_ENV"; fi

but the value of the PATH variable is not used to search for the filename.

As noted above, if a non-interactive shell is invoked with the --login option, Bash
attempts to read and execute commands from the login shell startup files.

Invoked with name sh

If Bash is invoked with the name sh, it tries to mimic the startup behavior of historical
versions of sh as closely as possible, while conforming to the posix standard as well.

When invoked as an interactive login shell, or as a non-interactive shell with the
--login option, it first attempts to read and execute commands from /etc/profile and
~/.profile, in that order. The --noprofile option may be used to inhibit this behavior.
When invoked as an interactive shell with the name sh, Bash looks for the variable ENV,
expands its value if it is defined, and uses the expanded value as the name of a file to read
and execute. Since a shell invoked as sh does not attempt to read and execute commands
from any other startup files, the --rcfile option has no effect. A non-interactive shell
invoked with the name sh does not attempt to read any other startup files.

When invoked as sh, Bash enters posix mode after the startup files are read.

Invoked in posix mode

When Bash is started in posix mode, as with the --posix command line option, it follows
the posix standard for startup files. In this mode, interactive shells expand the ENV variable
and commands are read and executed from the file whose name is the expanded value. No
other startup files are read.

Invoked by remote shell daemon

Bash attempts to determine when it is being run with its standard input connected to a
network connection, as when executed by the remote shell daemon, usually rshd, or the
secure shell daemon sshd. If Bash determines it is being run in this fashion, it reads and
executes commands from ~/.bashrc, if that file exists and is readable. It will not do this if
invoked as sh. The --norc option may be used to inhibit this behavior, and the --rcfile
option may be used to force another file to be read, but neither rshd nor sshd generally
invoke the shell with those options or allow them to be specified.

Invoked with unequal effective and real uid/gids

If Bash is started with the effective user (group) id not equal to the real user (group) id,
and the -p option is not supplied, no startup files are read, shell functions are not inherited
from the environment, the SHELLOPTS, BASHOPTS, CDPATH, and GLOBIGNORE variables, if
they appear in the environment, are ignored, and the effective user id is set to the real user
id. If the -p option is supplied at invocation, the startup behavior is the same, but the
effective user id is not reset.

6.3 Interactive Shells

Chapter 6: Bash Features 88

6.3.1 What is an Interactive Shell?

An interactive shell is one started without non-option arguments, unless -s is specified,
without specifying the -c option, and whose input and error output are both connected to
terminals (as determined by isatty(3)), or one started with the -i option.

An interactive shell generally reads from and writes to a user’s terminal.

The -s invocation option may be used to set the positional parameters when an inter-
active shell is started.

6.3.2 Is this Shell Interactive?

To determine within a startup script whether or not Bash is running interactively, test the
value of the ‘-’ special parameter. It contains i when the shell is interactive. For example:

case "$-" in

i) echo This shell is interactive ;;

*) echo This shell is not interactive ;;

esac

Alternatively, startup scripts may examine the variable PS1; it is unset in non-interactive
shells, and set in interactive shells. Thus:

if [-z "$PS1"]; then

echo This shell is not interactive

else

echo This shell is interactive

fi

6.3.3 Interactive Shell Behavior

When the shell is running interactively, it changes its behavior in several ways.

1. Startup files are read and executed as described in Section 6.2 [Bash Startup Files],
page 86.

2. Job Control (see Chapter 7 [Job Control], page 102) is enabled by default. When job
control is in effect, Bash ignores the keyboard-generated job control signals SIGTTIN,
SIGTTOU, and SIGTSTP.

3. Bash expands and displays PS1 before reading the first line of a command, and expands
and displays PS2 before reading the second and subsequent lines of a multi-line com-
mand. Bash expands and displays PS0 after it reads a command but before executing
it. See Section 6.9 [Controlling the Prompt], page 96, for a complete list of prompt
string escape sequences.

4. Bash executes the value of the PROMPT_COMMAND variable as a command before printing
the primary prompt, $PS1 (see Section 5.2 [Bash Variables], page 72).

5. Readline (see Chapter 8 [Command Line Editing], page 106) is used to read commands
from the user’s terminal.

6. Bash inspects the value of the ignoreeof option to set -o instead of exiting imme-
diately when it receives an EOF on its standard input when reading a command (see
Section 4.3.1 [The Set Builtin], page 61).

7. Command history (see Section 9.1 [Bash History Facilities], page 140) and history
expansion (see Section 9.3 [History Interaction], page 142) are enabled by default.

Chapter 6: Bash Features 89

Bash will save the command history to the file named by $HISTFILE when a shell with
history enabled exits.

8. Alias expansion (see Section 6.6 [Aliases], page 92) is performed by default.

9. In the absence of any traps, Bash ignores SIGTERM (see Section 3.7.6 [Signals], page 40).

10. In the absence of any traps, SIGINT is caught and handled ((see Section 3.7.6 [Signals],
page 40). SIGINT will interrupt some shell builtins.

11. An interactive login shell sends a SIGHUP to all jobs on exit if the huponexit shell
option has been enabled (see Section 3.7.6 [Signals], page 40).

12. The -n invocation option is ignored, and ‘set -n’ has no effect (see Section 4.3.1 [The
Set Builtin], page 61).

13. Bash will check for mail periodically, depending on the values of the MAIL, MAILPATH,
and MAILCHECK shell variables (see Section 5.2 [Bash Variables], page 72).

14. Expansion errors due to references to unbound shell variables after ‘set -u’ has been
enabled will not cause the shell to exit (see Section 4.3.1 [The Set Builtin], page 61).

15. The shell will not exit on expansion errors caused by var being unset or null in
${var:?word} expansions (see Section 3.5.3 [Shell Parameter Expansion], page 24).

16. Redirection errors encountered by shell builtins will not cause the shell to exit.

17. When running in posix mode, a special builtin returning an error status will not cause
the shell to exit (see Section 6.11 [Bash POSIX Mode], page 98).

18. A failed exec will not cause the shell to exit (see Section 4.1 [Bourne Shell Builtins],
page 43).

19. Parser syntax errors will not cause the shell to exit.

20. Simple spelling correction for directory arguments to the cd builtin is enabled by default
(see the description of the cdspell option to the shopt builtin in Section 4.3.2 [The
Shopt Builtin], page 65).

21. The shell will check the value of the TMOUT variable and exit if a command is not
read within the specified number of seconds after printing $PS1 (see Section 5.2 [Bash
Variables], page 72).

6.4 Bash Conditional Expressions

Conditional expressions are used by the [[compound command and the test and [builtin
commands.

Expressions may be unary or binary. Unary expressions are often used to examine the
status of a file. There are string operators and numeric comparison operators as well.
Bash handles several filenames specially when they are used in expressions. If the operating
system on which Bash is running provides these special files, Bash will use them; otherwise it
will emulate them internally with this behavior: If the file argument to one of the primaries
is of the form /dev/fd/N, then file descriptor N is checked. If the file argument to one of
the primaries is one of /dev/stdin, /dev/stdout, or /dev/stderr, file descriptor 0, 1, or
2, respectively, is checked.

When used with [[, the ‘<’ and ‘>’ operators sort lexicographically using the current
locale. The test command uses ASCII ordering.

Chapter 6: Bash Features 90

Unless otherwise specified, primaries that operate on files follow symbolic links and
operate on the target of the link, rather than the link itself.

-a file True if file exists.

-b file True if file exists and is a block special file.

-c file True if file exists and is a character special file.

-d file True if file exists and is a directory.

-e file True if file exists.

-f file True if file exists and is a regular file.

-g file True if file exists and its set-group-id bit is set.

-h file True if file exists and is a symbolic link.

-k file True if file exists and its "sticky" bit is set.

-p file True if file exists and is a named pipe (FIFO).

-r file True if file exists and is readable.

-s file True if file exists and has a size greater than zero.

-t fd True if file descriptor fd is open and refers to a terminal.

-u file True if file exists and its set-user-id bit is set.

-w file True if file exists and is writable.

-x file True if file exists and is executable.

-G file True if file exists and is owned by the effective group id.

-L file True if file exists and is a symbolic link.

-N file True if file exists and has been modified since it was last read.

-O file True if file exists and is owned by the effective user id.

-S file True if file exists and is a socket.

file1 -ef file2

True if file1 and file2 refer to the same device and inode numbers.

file1 -nt file2

True if file1 is newer (according to modification date) than file2, or if file1 exists
and file2 does not.

file1 -ot file2

True if file1 is older than file2, or if file2 exists and file1 does not.

-o optname

True if the shell option optname is enabled. The list of options appears in
the description of the -o option to the set builtin (see Section 4.3.1 [The Set
Builtin], page 61).

-v varname

True if the shell variable varname is set (has been assigned a value).

Chapter 6: Bash Features 91

-R varname

True if the shell variable varname is set and is a name reference.

-z string True if the length of string is zero.

-n string

string True if the length of string is non-zero.

string1 == string2

string1 = string2

True if the strings are equal. When used with the [[command, this per-
forms pattern matching as described above (see Section 3.2.4.2 [Conditional
Constructs], page 11).

‘=’ should be used with the test command for posix conformance.

string1 != string2

True if the strings are not equal.

string1 < string2

True if string1 sorts before string2 lexicographically.

string1 > string2

True if string1 sorts after string2 lexicographically.

arg1 OP arg2

OP is one of ‘-eq’, ‘-ne’, ‘-lt’, ‘-le’, ‘-gt’, or ‘-ge’. These arithmetic binary
operators return true if arg1 is equal to, not equal to, less than, less than or
equal to, greater than, or greater than or equal to arg2, respectively. Arg1 and
arg2 may be positive or negative integers. When used with the [[command,
Arg1 and Arg2 are evaluated as arithmetic expressions (see Section 6.5 [Shell
Arithmetic], page 91).

6.5 Shell Arithmetic

The shell allows arithmetic expressions to be evaluated, as one of the shell expansions or by
using the ((compound command, the let builtin, or the -i option to the declare builtin.

Evaluation is done in fixed-width integers with no check for overflow, though division by
0 is trapped and flagged as an error. The operators and their precedence, associativity, and
values are the same as in the C language. The following list of operators is grouped into
levels of equal-precedence operators. The levels are listed in order of decreasing precedence.

id++ id-- variable post-increment and post-decrement

++id --id variable pre-increment and pre-decrement

- + unary minus and plus

! ~ logical and bitwise negation

** exponentiation

* / % multiplication, division, remainder

+ - addition, subtraction

Chapter 6: Bash Features 92

<< >> left and right bitwise shifts

<= >= < > comparison

== != equality and inequality

& bitwise AND

^ bitwise exclusive OR

| bitwise OR

&& logical AND

|| logical OR

expr ? expr : expr

conditional operator

= *= /= %= += -= <<= >>= &= ^= |=

assignment

expr1 , expr2

comma

Shell variables are allowed as operands; parameter expansion is performed before the
expression is evaluated. Within an expression, shell variables may also be referenced by
name without using the parameter expansion syntax. A shell variable that is null or unset
evaluates to 0 when referenced by name without using the parameter expansion syntax.
The value of a variable is evaluated as an arithmetic expression when it is referenced, or
when a variable which has been given the integer attribute using ‘declare -i’ is assigned
a value. A null value evaluates to 0. A shell variable need not have its integer attribute
turned on to be used in an expression.

Constants with a leading 0 are interpreted as octal numbers. A leading ‘0x’ or ‘0X’
denotes hexadecimal. Otherwise, numbers take the form [base#]n, where the optional base
is a decimal number between 2 and 64 representing the arithmetic base, and n is a number
in that base. If base# is omitted, then base 10 is used. When specifying n, the digits greater
than 9 are represented by the lowercase letters, the uppercase letters, ‘@’, and ‘_’, in that
order. If base is less than or equal to 36, lowercase and uppercase letters may be used
interchangeably to represent numbers between 10 and 35.

Operators are evaluated in order of precedence. Sub-expressions in parentheses are
evaluated first and may override the precedence rules above.

6.6 Aliases

Aliases allow a string to be substituted for a word when it is used as the first word of a
simple command. The shell maintains a list of aliases that may be set and unset with the
alias and unalias builtin commands.

The first word of each simple command, if unquoted, is checked to see if it has an alias.
If so, that word is replaced by the text of the alias. The characters ‘/’, ‘$’, ‘‘’, ‘=’ and any of
the shell metacharacters or quoting characters listed above may not appear in an alias name.
The replacement text may contain any valid shell input, including shell metacharacters. The
first word of the replacement text is tested for aliases, but a word that is identical to an

Chapter 6: Bash Features 93

alias being expanded is not expanded a second time. This means that one may alias ls to
"ls -F", for instance, and Bash does not try to recursively expand the replacement text. If
the last character of the alias value is a blank, then the next command word following the
alias is also checked for alias expansion.

Aliases are created and listed with the alias command, and removed with the unalias
command.

There is no mechanism for using arguments in the replacement text, as in csh. If
arguments are needed, a shell function should be used (see Section 3.3 [Shell Functions],
page 17).

Aliases are not expanded when the shell is not interactive, unless the expand_aliases

shell option is set using shopt (see Section 4.3.2 [The Shopt Builtin], page 65).

The rules concerning the definition and use of aliases are somewhat confusing. Bash
always reads at least one complete line of input before executing any of the commands on
that line. Aliases are expanded when a command is read, not when it is executed. Therefore,
an alias definition appearing on the same line as another command does not take effect until
the next line of input is read. The commands following the alias definition on that line are
not affected by the new alias. This behavior is also an issue when functions are executed.
Aliases are expanded when a function definition is read, not when the function is executed,
because a function definition is itself a command. As a consequence, aliases defined in a
function are not available until after that function is executed. To be safe, always put alias
definitions on a separate line, and do not use alias in compound commands.

For almost every purpose, shell functions are preferred over aliases.

6.7 Arrays

Bash provides one-dimensional indexed and associative array variables. Any variable may
be used as an indexed array; the declare builtin will explicitly declare an array. There is
no maximum limit on the size of an array, nor any requirement that members be indexed
or assigned contiguously. Indexed arrays are referenced using integers (including arithmetic
expressions (see Section 6.5 [Shell Arithmetic], page 91)) and are zero-based; associative
arrays use arbitrary strings. Unless otherwise noted, indexed array indices must be non-
negative integers.

An indexed array is created automatically if any variable is assigned to using the syntax

name[subscript]=value

The subscript is treated as an arithmetic expression that must evaluate to a number. To
explicitly declare an array, use

declare -a name

The syntax

declare -a name[subscript]

is also accepted; the subscript is ignored.

Associative arrays are created using

declare -A name.

Attributes may be specified for an array variable using the declare and readonly

builtins. Each attribute applies to all members of an array.

Chapter 6: Bash Features 94

Arrays are assigned to using compound assignments of the form

name=(value1 value2 ...)

where each value is of the form [subscript]=string. Indexed array assignments do not
require anything but string. When assigning to indexed arrays, if the optional subscript is
supplied, that index is assigned to; otherwise the index of the element assigned is the last
index assigned to by the statement plus one. Indexing starts at zero.

When assigning to an associative array, the subscript is required.

This syntax is also accepted by the declare builtin. Individual array elements may be
assigned to using the name[subscript]=value syntax introduced above.

When assigning to an indexed array, if name is subscripted by a negative number, that
number is interpreted as relative to one greater than the maximum index of name, so
negative indices count back from the end of the array, and an index of -1 references the last
element.

Any element of an array may be referenced using ${name[subscript]}. The braces are
required to avoid conflicts with the shell’s filename expansion operators. If the subscript is
‘@’ or ‘*’, the word expands to all members of the array name. These subscripts differ only
when the word appears within double quotes. If the word is double-quoted, ${name[*]}
expands to a single word with the value of each array member separated by the first charac-
ter of the IFS variable, and ${name[@]} expands each element of name to a separate word.
When there are no array members, ${name[@]} expands to nothing. If the double-quoted
expansion occurs within a word, the expansion of the first parameter is joined with the
beginning part of the original word, and the expansion of the last parameter is joined with
the last part of the original word. This is analogous to the expansion of the special param-
eters ‘@’ and ‘*’. ${#name[subscript]} expands to the length of ${name[subscript]}. If
subscript is ‘@’ or ‘*’, the expansion is the number of elements in the array. If the subscript
used to reference an element of an indexed array evaluates to a number less than zero, it
is interpreted as relative to one greater than the maximum index of the array, so negative
indices count back from the end of the array, and an index of -1 refers to the last element.

Referencing an array variable without a subscript is equivalent to referencing with a
subscript of 0. Any reference to a variable using a valid subscript is legal, and bash will
create an array if necessary.

An array variable is considered set if a subscript has been assigned a value. The null
string is a valid value.

It is possible to obtain the keys (indices) of an array as well as the values. ${!name[@]}
and ${!name[*]} expand to the indices assigned in array variable name. The treatment
when in double quotes is similar to the expansion of the special parameters ‘@’ and ‘*’
within double quotes.

The unset builtin is used to destroy arrays. unset name[subscript] destroys the array
element at index subscript. Negative subscripts to indexed arrays are interpreted as de-
scribed above. Unsetting the last element of an array variable does not unset the variable.
unset name, where name is an array, removes the entire array. A subscript of ‘*’ or ‘@’ also
removes the entire array.

When using a variable name with a subscript as an argument to a command, such as
with unset, without using the word expansion syntax described above, the argument is

Chapter 6: Bash Features 95

subject to the shell’s filename expansion. If filename expansion is not desired, the argument
should be quoted.

The declare, local, and readonly builtins each accept a -a option to specify an indexed
array and a -A option to specify an associative array. If both options are supplied, -A takes
precedence. The read builtin accepts a -a option to assign a list of words read from the
standard input to an array, and can read values from the standard input into individual
array elements. The set and declare builtins display array values in a way that allows
them to be reused as input.

6.8 The Directory Stack

The directory stack is a list of recently-visited directories. The pushd builtin adds directories
to the stack as it changes the current directory, and the popd builtin removes specified
directories from the stack and changes the current directory to the directory removed. The
dirs builtin displays the contents of the directory stack. The current directory is always
the "top" of the directory stack.

The contents of the directory stack are also visible as the value of the DIRSTACK shell
variable.

6.8.1 Directory Stack Builtins

dirs

dirs [-clpv] [+N | -N]

Display the list of currently remembered directories. Directories are added to
the list with the pushd command; the popd command removes directories from
the list. The current directory is always the first directory in the stack.

-c Clears the directory stack by deleting all of the elements.

-l Produces a listing using full pathnames; the default listing format
uses a tilde to denote the home directory.

-p Causes dirs to print the directory stack with one entry per line.

-v Causes dirs to print the directory stack with one entry per line,
prefixing each entry with its index in the stack.

+N Displays the Nth directory (counting from the left of the list printed
by dirs when invoked without options), starting with zero.

-N Displays the Nth directory (counting from the right of the list
printed by dirs when invoked without options), starting with zero.

popd

popd [-n] [+N | -N]

When no arguments are given, popd removes the top directory from the stack
and performs a cd to the new top directory. The elements are numbered from
0 starting at the first directory listed with dirs; that is, popd is equivalent to
popd +0.

-n Suppresses the normal change of directory when removing directo-
ries from the stack, so that only the stack is manipulated.

Chapter 6: Bash Features 96

+N Removes theNth directory (counting from the left of the list printed
by dirs), starting with zero.

-N Removes the Nth directory (counting from the right of the list
printed by dirs), starting with zero.

pushd

pushd [-n] [+N | -N | dir]

Save the current directory on the top of the directory stack and then cd to dir.
With no arguments, pushd exchanges the top two directories and makes the
new top the current directory.

-n Suppresses the normal change of directory when rotating or adding
directories to the stack, so that only the stack is manipulated.

+N Brings the Nth directory (counting from the left of the list printed
by dirs, starting with zero) to the top of the list by rotating the
stack.

-N Brings the Nth directory (counting from the right of the list printed
by dirs, starting with zero) to the top of the list by rotating the
stack.

dir Makes dir be the top of the stack, making it the new current direc-
tory as if it had been supplied as an argument to the cd builtin.

6.9 Controlling the Prompt

The value of the variable PROMPT_COMMAND is examined just before Bash prints each primary
prompt. If PROMPT_COMMAND is set and has a non-null value, then the value is executed just
as if it had been typed on the command line.

In addition, the following table describes the special characters which can appear in the
prompt variables PS0, PS1, PS2, and PS4:

\a A bell character.

\d The date, in "Weekday Month Date" format (e.g., "Tue May 26").

\D{format}

The format is passed to strftime(3) and the result is inserted into the prompt
string; an empty format results in a locale-specific time representation. The
braces are required.

\e An escape character.

\h The hostname, up to the first ‘.’.

\H The hostname.

\j The number of jobs currently managed by the shell.

\l The basename of the shell’s terminal device name.

\n A newline.

\r A carriage return.

Chapter 6: Bash Features 97

\s The name of the shell, the basename of $0 (the portion following the final slash).

\t The time, in 24-hour HH:MM:SS format.

\T The time, in 12-hour HH:MM:SS format.

\@ The time, in 12-hour am/pm format.

\A The time, in 24-hour HH:MM format.

\u The username of the current user.

\v The version of Bash (e.g., 2.00)

\V The release of Bash, version + patchlevel (e.g., 2.00.0)

\w The current working directory, with $HOME abbreviated with a tilde (uses the
$PROMPT_DIRTRIM variable).

\W The basename of $PWD, with $HOME abbreviated with a tilde.

\! The history number of this command.

\# The command number of this command.

\$ If the effective uid is 0, #, otherwise $.

\nnn The character whose ASCII code is the octal value nnn.

\\ A backslash.

\[Begin a sequence of non-printing characters. This could be used to embed a
terminal control sequence into the prompt.

\] End a sequence of non-printing characters.

The command number and the history number are usually different: the history number
of a command is its position in the history list, which may include commands restored from
the history file (see Section 9.1 [Bash History Facilities], page 140), while the command
number is the position in the sequence of commands executed during the current shell
session.

After the string is decoded, it is expanded via parameter expansion, command substi-
tution, arithmetic expansion, and quote removal, subject to the value of the promptvars

shell option (see Section 4.2 [Bash Builtins], page 50).

6.10 The Restricted Shell

If Bash is started with the name rbash, or the --restricted or -r option is supplied at
invocation, the shell becomes restricted. A restricted shell is used to set up an environment
more controlled than the standard shell. A restricted shell behaves identically to bash with
the exception that the following are disallowed or not performed:

• Changing directories with the cd builtin.

• Setting or unsetting the values of the SHELL, PATH, ENV, or BASH_ENV variables.

• Specifying command names containing slashes.

• Specifying a filename containing a slash as an argument to the . builtin command.

Chapter 6: Bash Features 98

• Specifying a filename containing a slash as an argument to the -p option to the hash

builtin command.

• Importing function definitions from the shell environment at startup.

• Parsing the value of SHELLOPTS from the shell environment at startup.

• Redirecting output using the ‘>’, ‘>|’, ‘<>’, ‘>&’, ‘&>’, and ‘>>’ redirection operators.

• Using the exec builtin to replace the shell with another command.

• Adding or deleting builtin commands with the -f and -d options to the enable builtin.

• Using the enable builtin command to enable disabled shell builtins.

• Specifying the -p option to the command builtin.

• Turning off restricted mode with ‘set +r’ or ‘set +o restricted’.

These restrictions are enforced after any startup files are read.

When a command that is found to be a shell script is executed (see Section 3.8 [Shell
Scripts], page 41), rbash turns off any restrictions in the shell spawned to execute the script.

6.11 Bash POSIX Mode

Starting Bash with the --posix command-line option or executing ‘set -o posix’ while
Bash is running will cause Bash to conform more closely to the posix standard by changing
the behavior to match that specified by posix in areas where the Bash default differs.

When invoked as sh, Bash enters posix mode after reading the startup files.

The following list is what’s changed when ‘posix mode’ is in effect:

1. When a command in the hash table no longer exists, Bash will re-search $PATH to find
the new location. This is also available with ‘shopt -s checkhash’.

2. The message printed by the job control code and builtins when a job exits with a
non-zero status is ‘Done(status)’.

3. The message printed by the job control code and builtins when a job is stopped is
‘Stopped(signame)’, where signame is, for example, SIGTSTP.

4. Alias expansion is always enabled, even in non-interactive shells.

5. Reserved words appearing in a context where reserved words are recognized do not
undergo alias expansion.

6. The posix PS1 and PS2 expansions of ‘!’ to the history number and ‘!!’ to ‘!’ are
enabled, and parameter expansion is performed on the values of PS1 and PS2 regardless
of the setting of the promptvars option.

7. The posix startup files are executed ($ENV) rather than the normal Bash files.

8. Tilde expansion is only performed on assignments preceding a command name, rather
than on all assignment statements on the line.

9. The default history file is ~/.sh_history (this is the default value of $HISTFILE).

10. Redirection operators do not perform filename expansion on the word in the redirection
unless the shell is interactive.

11. Redirection operators do not perform word splitting on the word in the redirection.

12. Function names must be valid shell names. That is, they may not contain characters
other than letters, digits, and underscores, and may not start with a digit. Declaring
a function with an invalid name causes a fatal syntax error in non-interactive shells.

Chapter 6: Bash Features 99

13. Function names may not be the same as one of the posix special builtins.

14. posix special builtins are found before shell functions during command lookup.

15. When printing shell function definitions (e.g., by type), Bash does not print the
function keyword.

16. Literal tildes that appear as the first character in elements of the PATH variable are not
expanded as described above under Section 3.5.2 [Tilde Expansion], page 23.

17. The time reserved word may be used by itself as a command. When used in this way,
it displays timing statistics for the shell and its completed children. The TIMEFORMAT

variable controls the format of the timing information.

18. When parsing and expanding a ${. . .} expansion that appears within double quotes,
single quotes are no longer special and cannot be used to quote a closing brace or
other special character, unless the operator is one of those defined to perform pattern
removal. In this case, they do not have to appear as matched pairs.

19. The parser does not recognize time as a reserved word if the next token begins with a
‘-’.

20. The ‘!’ character does not introduce history expansion within a double-quoted string,
even if the histexpand option is enabled.

21. If a posix special builtin returns an error status, a non-interactive shell exits. The fatal
errors are those listed in the posix standard, and include things like passing incorrect
options, redirection errors, variable assignment errors for assignments preceding the
command name, and so on.

22. A non-interactive shell exits with an error status if a variable assignment error occurs
when no command name follows the assignment statements. A variable assignment
error occurs, for example, when trying to assign a value to a readonly variable.

23. A non-interactive shell exits with an error status if a variable assignment error occurs
in an assignment statement preceding a special builtin, but not with any other simple
command.

24. A non-interactive shell exits with an error status if the iteration variable in a for

statement or the selection variable in a select statement is a readonly variable.

25. Non-interactive shells exit if filename in . filename is not found.

26. Non-interactive shells exit if a syntax error in an arithmetic expansion results in an
invalid expression.

27. Non-interactive shells exit if a parameter expansion error occurs.

28. Non-interactive shells exit if there is a syntax error in a script read with the . or source
builtins, or in a string processed by the eval builtin.

29. Process substitution is not available.

30. While variable indirection is available, it may not be applied to the ‘#’ and ‘?’ special
parameters.

31. When expanding the ‘*’ special parameter in a pattern context where the expansion is
double-quoted does not treat the $* as if it were double-quoted.

32. Assignment statements preceding posix special builtins persist in the shell environment
after the builtin completes.

Chapter 6: Bash Features 100

33. Assignment statements preceding shell function calls persist in the shell environment
after the function returns, as if a posix special builtin command had been executed.

34. The command builtin does not prevent builtins that take assignment statements as ar-
guments from expanding them as assignment statements; when not in posix mode,
assignment builtins lose their assignment statement expansion properties when pre-
ceded by command.

35. The bg builtin uses the required format to describe each job placed in the background,
which does not include an indication of whether the job is the current or previous job.

36. The output of ‘kill -l’ prints all the signal names on a single line, separated by spaces,
without the ‘SIG’ prefix.

37. The kill builtin does not accept signal names with a ‘SIG’ prefix.

38. The export and readonly builtin commands display their output in the format re-
quired by posix.

39. The trap builtin displays signal names without the leading SIG.

40. The trap builtin doesn’t check the first argument for a possible signal specification
and revert the signal handling to the original disposition if it is, unless that argument
consists solely of digits and is a valid signal number. If users want to reset the handler
for a given signal to the original disposition, they should use ‘-’ as the first argument.

41. The . and source builtins do not search the current directory for the filename argument
if it is not found by searching PATH.

42. Enabling posixmode has the effect of setting the inherit_errexit option, so subshells
spawned to execute command substitutions inherit the value of the -e option from the
parent shell. When the inherit_errexit option is not enabled, Bash clears the -e

option in such subshells.

43. When the alias builtin displays alias definitions, it does not display them with a
leading ‘alias ’ unless the -p option is supplied.

44. When the set builtin is invoked without options, it does not display shell function
names and definitions.

45. When the set builtin is invoked without options, it displays variable values without
quotes, unless they contain shell metacharacters, even if the result contains nonprinting
characters.

46. When the cd builtin is invoked in logical mode, and the pathname constructed from
$PWD and the directory name supplied as an argument does not refer to an existing
directory, cd will fail instead of falling back to physical mode.

47. The pwd builtin verifies that the value it prints is the same as the current directory,
even if it is not asked to check the file system with the -P option.

48. When listing the history, the fc builtin does not include an indication of whether or
not a history entry has been modified.

49. The default editor used by fc is ed.

50. The type and command builtins will not report a non-executable file as having been
found, though the shell will attempt to execute such a file if it is the only so-named file
found in $PATH.

51. The vi editing mode will invoke the vi editor directly when the ‘v’ command is run,
instead of checking $VISUAL and $EDITOR.

Chapter 6: Bash Features 101

52. When the xpg_echo option is enabled, Bash does not attempt to interpret any ar-
guments to echo as options. Each argument is displayed, after escape characters are
converted.

53. The ulimit builtin uses a block size of 512 bytes for the -c and -f options.

54. The arrival of SIGCHLD when a trap is set on SIGCHLD does not interrupt the wait

builtin and cause it to return immediately. The trap command is run once for each
child that exits.

55. The read builtin may be interrupted by a signal for which a trap has been set. If Bash
receives a trapped signal while executing read, the trap handler executes and read

returns an exit status greater than 128.

56. Bash removes an exited background process’s status from the list of such statuses after
the wait builtin is used to obtain it.

There is other posix behavior that Bash does not implement by default even when in
posix mode. Specifically:

1. The fc builtin checks $EDITOR as a program to edit history entries if FCEDIT is unset,
rather than defaulting directly to ed. fc uses ed if EDITOR is unset.

2. As noted above, Bash requires the xpg_echo option to be enabled for the echo builtin
to be fully conformant.

Bash can be configured to be posix-conformant by default, by specifying the --enable-
strict-posix-default to configure when building (see Section 10.8 [Optional Features],
page 148).

102

7 Job Control

This chapter discusses what job control is, how it works, and how Bash allows you to access
its facilities.

7.1 Job Control Basics

Job control refers to the ability to selectively stop (suspend) the execution of processes and
continue (resume) their execution at a later point. A user typically employs this facility
via an interactive interface supplied jointly by the operating system kernel’s terminal driver
and Bash.

The shell associates a job with each pipeline. It keeps a table of currently executing jobs,
which may be listed with the jobs command. When Bash starts a job asynchronously, it
prints a line that looks like:

[1] 25647

indicating that this job is job number 1 and that the process id of the last process in the
pipeline associated with this job is 25647. All of the processes in a single pipeline are
members of the same job. Bash uses the job abstraction as the basis for job control.

To facilitate the implementation of the user interface to job control, the operating system
maintains the notion of a current terminal process group id. Members of this process group
(processes whose process group id is equal to the current terminal process group id) receive
keyboard-generated signals such as SIGINT. These processes are said to be in the foreground.
Background processes are those whose process group id differs from the terminal’s; such
processes are immune to keyboard-generated signals. Only foreground processes are allowed
to read from or, if the user so specifies with stty tostop, write to the terminal. Background
processes which attempt to read from (write to when stty tostop is in effect) the terminal
are sent a SIGTTIN (SIGTTOU) signal by the kernel’s terminal driver, which, unless caught,
suspends the process.

If the operating system on which Bash is running supports job control, Bash contains
facilities to use it. Typing the suspend character (typically ‘^Z’, Control-Z) while a process
is running causes that process to be stopped and returns control to Bash. Typing the
delayed suspend character (typically ‘^Y’, Control-Y) causes the process to be stopped
when it attempts to read input from the terminal, and control to be returned to Bash. The
user then manipulates the state of this job, using the bg command to continue it in the
background, the fg command to continue it in the foreground, or the kill command to
kill it. A ‘^Z’ takes effect immediately, and has the additional side effect of causing pending
output and typeahead to be discarded.

There are a number of ways to refer to a job in the shell. The character ‘%’ introduces
a job specification (jobspec).

Job number n may be referred to as ‘%n’. The symbols ‘%%’ and ‘%+’ refer to the shell’s
notion of the current job, which is the last job stopped while it was in the foreground or
started in the background. A single ‘%’ (with no accompanying job specification) also refers
to the current job. The previous job may be referenced using ‘%-’. If there is only a single
job, ‘%+’ and ‘%-’ can both be used to refer to that job. In output pertaining to jobs (e.g.,
the output of the jobs command), the current job is always flagged with a ‘+’, and the
previous job with a ‘-’.

Chapter 7: Job Control 103

A job may also be referred to using a prefix of the name used to start it, or using a
substring that appears in its command line. For example, ‘%ce’ refers to a stopped ce job.
Using ‘%?ce’, on the other hand, refers to any job containing the string ‘ce’ in its command
line. If the prefix or substring matches more than one job, Bash reports an error.

Simply naming a job can be used to bring it into the foreground: ‘%1’ is a synonym for
‘fg %1’, bringing job 1 from the background into the foreground. Similarly, ‘%1 &’ resumes
job 1 in the background, equivalent to ‘bg %1’

The shell learns immediately whenever a job changes state. Normally, Bash waits until
it is about to print a prompt before reporting changes in a job’s status so as to not interrupt
any other output. If the -b option to the set builtin is enabled, Bash reports such changes
immediately (see Section 4.3.1 [The Set Builtin], page 61). Any trap on SIGCHLD is executed
for each child process that exits.

If an attempt to exit Bash is made while jobs are stopped, (or running, if the checkjobs
option is enabled – see Section 4.3.2 [The Shopt Builtin], page 65), the shell prints a warning
message, and if the checkjobs option is enabled, lists the jobs and their statuses. The jobs
command may then be used to inspect their status. If a second attempt to exit is made
without an intervening command, Bash does not print another warning, and any stopped
jobs are terminated.

When the shell is waiting for a job or process using the wait builtin, and job control is
enabled, wait will return when the job changes state. The -f option will force wait to wait
until the job or process terminates before returning.

7.2 Job Control Builtins

bg

bg [jobspec ...]

Resume each suspended job jobspec in the background, as if it had been started
with ‘&’. If jobspec is not supplied, the current job is used. The return status
is zero unless it is run when job control is not enabled, or, when run with job
control enabled, any jobspec was not found or specifies a job that was started
without job control.

fg

fg [jobspec]

Resume the job jobspec in the foreground and make it the current job. If
jobspec is not supplied, the current job is used. The return status is that of
the command placed into the foreground, or non-zero if run when job control
is disabled or, when run with job control enabled, jobspec does not specify a
valid job or jobspec specifies a job that was started without job control.

jobs

jobs [-lnprs] [jobspec]

jobs -x command [arguments]

The first form lists the active jobs. The options have the following meanings:

-l List process ids in addition to the normal information.

Chapter 7: Job Control 104

-n Display information only about jobs that have changed status since
the user was last notified of their status.

-p List only the process id of the job’s process group leader.

-r Display only running jobs.

-s Display only stopped jobs.

If jobspec is given, output is restricted to information about that job. If jobspec
is not supplied, the status of all jobs is listed.

If the -x option is supplied, jobs replaces any jobspec found in command or
arguments with the corresponding process group id, and executes command,
passing it arguments, returning its exit status.

kill

kill [-s sigspec] [-n signum] [-sigspec] jobspec or pid

kill -l|-L [exit_status]

Send a signal specified by sigspec or signum to the process named by job specifi-
cation jobspec or process id pid. sigspec is either a case-insensitive signal name
such as SIGINT (with or without the SIG prefix) or a signal number; signum
is a signal number. If sigspec and signum are not present, SIGTERM is used.
The -l option lists the signal names. If any arguments are supplied when -l is
given, the names of the signals corresponding to the arguments are listed, and
the return status is zero. exit status is a number specifying a signal number or
the exit status of a process terminated by a signal. The -L option is equivalent
to -l. The return status is zero if at least one signal was successfully sent, or
non-zero if an error occurs or an invalid option is encountered.

wait

wait [-fn] [jobspec or pid ...]

Wait until the child process specified by each process id pid or job specification
jobspec exits and return the exit status of the last command waited for. If a job
spec is given, all processes in the job are waited for. If no arguments are given,
all currently active child processes are waited for, and the return status is zero.
If the -n option is supplied, wait waits for any job to terminate and returns
its exit status. If the -f option is supplied, and job control is enabled, wait
forces each pid or jobspec to terminate before returning its status, intead of
returning when it changes status. If neither jobspec nor pid specifies an active
child process of the shell, the return status is 127.

disown

disown [-ar] [-h] [jobspec ... | pid ...]

Without options, remove each jobspec from the table of active jobs. If the -h

option is given, the job is not removed from the table, but is marked so that
SIGHUP is not sent to the job if the shell receives a SIGHUP. If jobspec is not
present, and neither the -a nor the -r option is supplied, the current job is
used. If no jobspec is supplied, the -a option means to remove or mark all jobs;
the -r option without a jobspec argument restricts operation to running jobs.

Chapter 7: Job Control 105

suspend

suspend [-f]

Suspend the execution of this shell until it receives a SIGCONT signal. A login
shell cannot be suspended; the -f option can be used to override this and force
the suspension.

When job control is not active, the kill and wait builtins do not accept jobspec argu-
ments. They must be supplied process ids.

7.3 Job Control Variables

auto_resume

This variable controls how the shell interacts with the user and job control. If
this variable exists then single word simple commands without redirections are
treated as candidates for resumption of an existing job. There is no ambiguity
allowed; if there is more than one job beginning with the string typed, then the
most recently accessed job will be selected. The name of a stopped job, in this
context, is the command line used to start it. If this variable is set to the value
‘exact’, the string supplied must match the name of a stopped job exactly; if
set to ‘substring’, the string supplied needs to match a substring of the name
of a stopped job. The ‘substring’ value provides functionality analogous to
the ‘%?’ job id (see Section 7.1 [Job Control Basics], page 102). If set to any
other value, the supplied string must be a prefix of a stopped job’s name; this
provides functionality analogous to the ‘%’ job id.

106

8 Command Line Editing

This chapter describes the basic features of the gnu command line editing interface. Com-
mand line editing is provided by the Readline library, which is used by several different
programs, including Bash. Command line editing is enabled by default when using an in-
teractive shell, unless the --noediting option is supplied at shell invocation. Line editing
is also used when using the -e option to the read builtin command (see Section 4.2 [Bash
Builtins], page 50). By default, the line editing commands are similar to those of Emacs.
A vi-style line editing interface is also available. Line editing can be enabled at any time
using the -o emacs or -o vi options to the set builtin command (see Section 4.3.1 [The
Set Builtin], page 61), or disabled using the +o emacs or +o vi options to set.

8.1 Introduction to Line Editing

The following paragraphs describe the notation used to represent keystrokes.

The text C-k is read as ‘Control-K’ and describes the character produced when the k

key is pressed while the Control key is depressed.

The text M-k is read as ‘Meta-K’ and describes the character produced when the Meta
key (if you have one) is depressed, and the k key is pressed. The Meta key is labeled ALT

on many keyboards. On keyboards with two keys labeled ALT (usually to either side of the
space bar), the ALT on the left side is generally set to work as a Meta key. The ALT key on
the right may also be configured to work as a Meta key or may be configured as some other
modifier, such as a Compose key for typing accented characters.

If you do not have a Meta or ALT key, or another key working as a Meta key, the identical
keystroke can be generated by typing ESC first, and then typing k. Either process is known
as metafying the k key.

The text M-C-k is read as ‘Meta-Control-k’ and describes the character produced by
metafying C-k.

In addition, several keys have their own names. Specifically, DEL, ESC, LFD, SPC, RET,
and TAB all stand for themselves when seen in this text, or in an init file (see Section 8.3
[Readline Init File], page 109). If your keyboard lacks a LFD key, typing C-j will produce
the desired character. The RET key may be labeled Return or Enter on some keyboards.

8.2 Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that the
first word on the line is misspelled. The Readline library gives you a set of commands for
manipulating the text as you type it in, allowing you to just fix your typo, and not forcing
you to retype the majority of the line. Using these editing commands, you move the cursor
to the place that needs correction, and delete or insert the text of the corrections. Then,
when you are satisfied with the line, you simply press RET. You do not have to be at the end
of the line to press RET; the entire line is accepted regardless of the location of the cursor
within the line.

Chapter 8: Command Line Editing 107

8.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character appears
where the cursor was, and then the cursor moves one space to the right. If you mistype a
character, you can use your erase character to back up and delete the mistyped character.

Sometimes you may mistype a character, and not notice the error until you have typed
several other characters. In that case, you can type C-b to move the cursor to the left, and
then correct your mistake. Afterwards, you can move the cursor to the right with C-f.

When you add text in the middle of a line, you will notice that characters to the right
of the cursor are ‘pushed over’ to make room for the text that you have inserted. Likewise,
when you delete text behind the cursor, characters to the right of the cursor are ‘pulled
back’ to fill in the blank space created by the removal of the text. A list of the bare essentials
for editing the text of an input line follows.

C-b Move back one character.

C-f Move forward one character.

DEL or Backspace
Delete the character to the left of the cursor.

C-d Delete the character underneath the cursor.

Printing characters
Insert the character into the line at the cursor.

C-_ or C-x C-u

Undo the last editing command. You can undo all the way back to an empty
line.

(Depending on your configuration, the Backspace key be set to delete the character to the
left of the cursor and the DEL key set to delete the character underneath the cursor, like
C-d, rather than the character to the left of the cursor.)

8.2.2 Readline Movement Commands

The above table describes the most basic keystrokes that you need in order to do editing of
the input line. For your convenience, many other commands have been added in addition
to C-b, C-f, C-d, and DEL. Here are some commands for moving more rapidly about the
line.

C-a Move to the start of the line.

C-e Move to the end of the line.

M-f Move forward a word, where a word is composed of letters and digits.

M-b Move backward a word.

C-l Clear the screen, reprinting the current line at the top.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

Chapter 8: Command Line Editing 108

8.2.3 Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking (re-inserting) it back into the line. (‘Cut’ and ‘paste’ are more recent jargon for
‘kill’ and ‘yank’.)

If the description for a command says that it ‘kills’ text, then you can be sure that you
can get the text back in a different (or the same) place later.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it all. The
kill ring is not line specific; the text that you killed on a previously typed line is available
to be yanked back later, when you are typing another line.

Here is the list of commands for killing text.

C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or, if between words, to the
end of the next word. Word boundaries are the same as those used by M-f.

M-DEL Kill from the cursor the start of the current word, or, if between words, to the
start of the previous word. Word boundaries are the same as those used by
M-b.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL

because the word boundaries differ.

Here is how to yank the text back into the line. Yanking means to copy the most-
recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

8.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the argument acts
as a repeat count, other times it is the sign of the argument that is significant. If you
pass a negative argument to a command which normally acts in a forward direction, that
command will act in a backward direction. For example, to kill text back to the start of
the line, you might type ‘M-- C-k’.

The general way to pass numeric arguments to a command is to type meta digits before
the command. If the first ‘digit’ typed is a minus sign (‘-’), then the sign of the argument
will be negative. Once you have typed one meta digit to get the argument started, you
can type the remainder of the digits, and then the command. For example, to give the C-d
command an argument of 10, you could type ‘M-1 0 C-d’, which will delete the next ten
characters on the input line.

8.2.5 Searching for Commands in the History

Readline provides commands for searching through the command history (see Section 9.1
[Bash History Facilities], page 140) for lines containing a specified string. There are two
search modes: incremental and non-incremental.

Chapter 8: Command Line Editing 109

Incremental searches begin before the user has finished typing the search string. As each
character of the search string is typed, Readline displays the next entry from the history
matching the string typed so far. An incremental search requires only as many characters as
needed to find the desired history entry. To search backward in the history for a particular
string, type C-r. Typing C-s searches forward through the history. The characters present
in the value of the isearch-terminators variable are used to terminate an incremental
search. If that variable has not been assigned a value, the ESC and C-J characters will
terminate an incremental search. C-g will abort an incremental search and restore the
original line. When the search is terminated, the history entry containing the search string
becomes the current line.

To find other matching entries in the history list, type C-r or C-s as appropriate. This
will search backward or forward in the history for the next entry matching the search string
typed so far. Any other key sequence bound to a Readline command will terminate the
search and execute that command. For instance, a RET will terminate the search and accept
the line, thereby executing the command from the history list. A movement command will
terminate the search, make the last line found the current line, and begin editing.

Readline remembers the last incremental search string. If two C-rs are typed without
any intervening characters defining a new search string, any remembered search string is
used.

Non-incremental searches read the entire search string before starting to search for
matching history lines. The search string may be typed by the user or be part of the
contents of the current line.

8.3 Readline Init File

Although the Readline library comes with a set of Emacs-like keybindings installed by
default, it is possible to use a different set of keybindings. Any user can customize programs
that use Readline by putting commands in an inputrc file, conventionally in his home
directory. The name of this file is taken from the value of the shell variable INPUTRC. If
that variable is unset, the default is ~/.inputrc. If that file does not exist or cannot be
read, the ultimate default is /etc/inputrc.

When a program which uses the Readline library starts up, the init file is read, and the
key bindings are set.

In addition, the C-x C-r command re-reads this init file, thus incorporating any changes
that you might have made to it.

8.3.1 Readline Init File Syntax

There are only a few basic constructs allowed in the Readline init file. Blank lines are
ignored. Lines beginning with a ‘#’ are comments. Lines beginning with a ‘$’ indicate
conditional constructs (see Section 8.3.2 [Conditional Init Constructs], page 117). Other
lines denote variable settings and key bindings.

Variable Settings
You can modify the run-time behavior of Readline by altering the values of
variables in Readline using the set command within the init file. The syntax
is simple:

set variable value

Chapter 8: Command Line Editing 110

Here, for example, is how to change from the default Emacs-like key binding to
use vi line editing commands:

set editing-mode vi

Variable names and values, where appropriate, are recognized without regard
to case. Unrecognized variable names are ignored.

Boolean variables (those that can be set to on or off) are set to on if the value is
null or empty, on (case-insensitive), or 1. Any other value results in the variable
being set to off.

The bind -V command lists the current Readline variable names and values.
See Section 4.2 [Bash Builtins], page 50.

A great deal of run-time behavior is changeable with the following variables.

bell-style

Controls what happens when Readline wants to ring the termi-
nal bell. If set to ‘none’, Readline never rings the bell. If set to
‘visible’, Readline uses a visible bell if one is available. If set to
‘audible’ (the default), Readline attempts to ring the terminal’s
bell.

bind-tty-special-chars

If set to ‘on’ (the default), Readline attempts to bind the control
characters treated specially by the kernel’s terminal driver to their
Readline equivalents.

blink-matching-paren

If set to ‘on’, Readline attempts to briefly move the cursor to an
opening parenthesis when a closing parenthesis is inserted. The
default is ‘off’.

colored-completion-prefix

If set to ‘on’, when listing completions, Readline displays the com-
mon prefix of the set of possible completions using a different color.
The color definitions are taken from the value of the LS_COLORS

environment variable. The default is ‘off’.

colored-stats

If set to ‘on’, Readline displays possible completions using different
colors to indicate their file type. The color definitions are taken
from the value of the LS_COLORS environment variable. The default
is ‘off’.

comment-begin

The string to insert at the beginning of the line when the
insert-comment command is executed. The default value is "#".

completion-display-width

The number of screen columns used to display possible matches
when performing completion. The value is ignored if it is less than
0 or greater than the terminal screen width. A value of 0 will cause
matches to be displayed one per line. The default value is -1.

Chapter 8: Command Line Editing 111

completion-ignore-case

If set to ‘on’, Readline performs filename matching and completion
in a case-insensitive fashion. The default value is ‘off’.

completion-map-case

If set to ‘on’, and completion-ignore-case is enabled, Readline treats
hyphens (‘-’) and underscores (‘_’) as equivalent when performing
case-insensitive filename matching and completion.

completion-prefix-display-length

The length in characters of the common prefix of a list of possible
completions that is displayed without modification. When set to a
value greater than zero, common prefixes longer than this value are
replaced with an ellipsis when displaying possible completions.

completion-query-items

The number of possible completions that determines when the user
is asked whether the list of possibilities should be displayed. If the
number of possible completions is greater than this value, Readline
will ask the user whether or not he wishes to view them; otherwise,
they are simply listed. This variable must be set to an integer value
greater than or equal to 0. A negative value means Readline should
never ask. The default limit is 100.

convert-meta

If set to ‘on’, Readline will convert characters with the eighth bit set
to an ascii key sequence by stripping the eighth bit and prefixing
an ESC character, converting them to a meta-prefixed key sequence.
The default value is ‘on’, but will be set to ‘off’ if the locale is one
that contains eight-bit characters.

disable-completion

If set to ‘On’, Readline will inhibit word completion. Completion
characters will be inserted into the line as if they had been mapped
to self-insert. The default is ‘off’.

echo-control-characters

When set to ‘on’, on operating systems that indicate they support
it, readline echoes a character corresponding to a signal generated
from the keyboard. The default is ‘on’.

editing-mode

The editing-mode variable controls which default set of key bind-
ings is used. By default, Readline starts up in Emacs editing mode,
where the keystrokes are most similar to Emacs. This variable can
be set to either ‘emacs’ or ‘vi’.

emacs-mode-string

If the show-mode-in-prompt variable is enabled, this string is dis-
played immediately before the last line of the primary prompt when
emacs editing mode is active. The value is expanded like a key bind-
ing, so the standard set of meta- and control prefixes and backslash

Chapter 8: Command Line Editing 112

escape sequences is available. Use the ‘\1’ and ‘\2’ escapes to begin
and end sequences of non-printing characters, which can be used
to embed a terminal control sequence into the mode string. The
default is ‘@’.

enable-bracketed-paste

When set to ‘On’, Readline will configure the terminal in a way that
will enable it to insert each paste into the editing buffer as a single
string of characters, instead of treating each character as if it had
been read from the keyboard. This can prevent pasted characters
from being interpreted as editing commands. The default is ‘off’.

enable-keypad

When set to ‘on’, Readline will try to enable the application keypad
when it is called. Some systems need this to enable the arrow keys.
The default is ‘off’.

enable-meta-key

When set to ‘on’, Readline will try to enable any meta modifier
key the terminal claims to support when it is called. On many
terminals, the meta key is used to send eight-bit characters. The
default is ‘on’.

expand-tilde

If set to ‘on’, tilde expansion is performed when Readline attempts
word completion. The default is ‘off’.

history-preserve-point

If set to ‘on’, the history code attempts to place the point (the
current cursor position) at the same location on each history line
retrieved with previous-history or next-history. The default
is ‘off’.

history-size

Set the maximum number of history entries saved in the history
list. If set to zero, any existing history entries are deleted and no
new entries are saved. If set to a value less than zero, the number
of history entries is not limited. By default, the number of history
entries is not limited. If an attempt is made to set history-size to
a non-numeric value, the maximum number of history entries will
be set to 500.

horizontal-scroll-mode

This variable can be set to either ‘on’ or ‘off’. Setting it to ‘on’
means that the text of the lines being edited will scroll horizontally
on a single screen line when they are longer than the width of the
screen, instead of wrapping onto a new screen line. By default, this
variable is set to ‘off’.

input-meta

If set to ‘on’, Readline will enable eight-bit input (it will not clear
the eighth bit in the characters it reads), regardless of what the

Chapter 8: Command Line Editing 113

terminal claims it can support. The default value is ‘off’, but
Readline will set it to ‘on’ if the locale contains eight-bit characters.
The name meta-flag is a synonym for this variable.

isearch-terminators

The string of characters that should terminate an incremental
search without subsequently executing the character as a command
(see Section 8.2.5 [Searching], page 108). If this variable has not
been given a value, the characters ESC and C-J will terminate an
incremental search.

keymap Sets Readline’s idea of the current keymap for key binding com-
mands. Acceptable keymap names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and
vi-insert. vi is equivalent to vi-command (vi-move is also a
synonym); emacs is equivalent to emacs-standard. The default
value is emacs. The value of the editing-mode variable also
affects the default keymap.

keyseq-timeout

Specifies the duration Readline will wait for a character when read-
ing an ambiguous key sequence (one that can form a complete key
sequence using the input read so far, or can take additional input
to complete a longer key sequence). If no input is received within
the timeout, Readline will use the shorter but complete key se-
quence. Readline uses this value to determine whether or not input
is available on the current input source (rl_instream by default).
The value is specified in milliseconds, so a value of 1000 means that
Readline will wait one second for additional input. If this variable is
set to a value less than or equal to zero, or to a non-numeric value,
Readline will wait until another key is pressed to decide which key
sequence to complete. The default value is 500.

mark-directories

If set to ‘on’, completed directory names have a slash appended.
The default is ‘on’.

mark-modified-lines

This variable, when set to ‘on’, causes Readline to display an as-
terisk (‘*’) at the start of history lines which have been modified.
This variable is ‘off’ by default.

mark-symlinked-directories

If set to ‘on’, completed names which are symbolic links to
directories have a slash appended (subject to the value of
mark-directories). The default is ‘off’.

match-hidden-files

This variable, when set to ‘on’, causes Readline to match files whose
names begin with a ‘.’ (hidden files) when performing filename
completion. If set to ‘off’, the leading ‘.’ must be supplied by

Chapter 8: Command Line Editing 114

the user in the filename to be completed. This variable is ‘on’ by
default.

menu-complete-display-prefix

If set to ‘on’, menu completion displays the common prefix of the
list of possible completions (which may be empty) before cycling
through the list. The default is ‘off’.

output-meta

If set to ‘on’, Readline will display characters with the eighth bit
set directly rather than as a meta-prefixed escape sequence. The
default is ‘off’, but Readline will set it to ‘on’ if the locale contains
eight-bit characters.

page-completions

If set to ‘on’, Readline uses an internal more-like pager to display
a screenful of possible completions at a time. This variable is ‘on’
by default.

print-completions-horizontally

If set to ‘on’, Readline will display completions with matches sorted
horizontally in alphabetical order, rather than down the screen.
The default is ‘off’.

revert-all-at-newline

If set to ‘on’, Readline will undo all changes to history lines before
returning when accept-line is executed. By default, history lines
may be modified and retain individual undo lists across calls to
readline. The default is ‘off’.

show-all-if-ambiguous

This alters the default behavior of the completion functions. If set
to ‘on’, words which have more than one possible completion cause
the matches to be listed immediately instead of ringing the bell.
The default value is ‘off’.

show-all-if-unmodified

This alters the default behavior of the completion functions in a
fashion similar to show-all-if-ambiguous. If set to ‘on’, words which
have more than one possible completion without any possible par-
tial completion (the possible completions don’t share a common
prefix) cause the matches to be listed immediately instead of ring-
ing the bell. The default value is ‘off’.

show-mode-in-prompt

If set to ‘on’, add a string to the beginning of the prompt indicating
the editing mode: emacs, vi command, or vi insertion. The mode
strings are user-settable (e.g., emacs-mode-string). The default
value is ‘off’.

skip-completed-text

If set to ‘on’, this alters the default completion behavior when in-
serting a single match into the line. It’s only active when perform-

Chapter 8: Command Line Editing 115

ing completion in the middle of a word. If enabled, readline does
not insert characters from the completion that match characters
after point in the word being completed, so portions of the word
following the cursor are not duplicated. For instance, if this is en-
abled, attempting completion when the cursor is after the ‘e’ in
‘Makefile’ will result in ‘Makefile’ rather than ‘Makefilefile’,
assuming there is a single possible completion. The default value
is ‘off’.

vi-cmd-mode-string

If the show-mode-in-prompt variable is enabled, this string is dis-
played immediately before the last line of the primary prompt when
vi editing mode is active and in command mode. The value is ex-
panded like a key binding, so the standard set of meta- and control
prefixes and backslash escape sequences is available. Use the ‘\1’
and ‘\2’ escapes to begin and end sequences of non-printing charac-
ters, which can be used to embed a terminal control sequence into
the mode string. The default is ‘(cmd)’.

vi-ins-mode-string

If the show-mode-in-prompt variable is enabled, this string is dis-
played immediately before the last line of the primary prompt when
vi editing mode is active and in insertion mode. The value is ex-
panded like a key binding, so the standard set of meta- and control
prefixes and backslash escape sequences is available. Use the ‘\1’
and ‘\2’ escapes to begin and end sequences of non-printing charac-
ters, which can be used to embed a terminal control sequence into
the mode string. The default is ‘(ins)’.

visible-stats

If set to ‘on’, a character denoting a file’s type is appended to the
filename when listing possible completions. The default is ‘off’.

Key Bindings
The syntax for controlling key bindings in the init file is simple. First you
need to find the name of the command that you want to change. The following
sections contain tables of the command name, the default keybinding, if any,
and a short description of what the command does.

Once you know the name of the command, simply place on a line in the init
file the name of the key you wish to bind the command to, a colon, and then
the name of the command. There can be no space between the key name and
the colon – that will be interpreted as part of the key name. The name of
the key can be expressed in different ways, depending on what you find most
comfortable.

In addition to command names, readline allows keys to be bound to a string
that is inserted when the key is pressed (a macro).

The bind -p command displays Readline function names and bindings in a
format that can put directly into an initialization file. See Section 4.2 [Bash
Builtins], page 50.

Chapter 8: Command Line Editing 116

keyname: function-name or macro
keyname is the name of a key spelled out in English. For example:

Control-u: universal-argument

Meta-Rubout: backward-kill-word

Control-o: "> output"

In the above example, C-u is bound to the function
universal-argument, M-DEL is bound to the function
backward-kill-word, and C-o is bound to run the macro
expressed on the right hand side (that is, to insert the text ‘>
output’ into the line).

A number of symbolic character names are recognized while
processing this key binding syntax: DEL, ESC, ESCAPE, LFD,
NEWLINE, RET, RETURN, RUBOUT, SPACE, SPC, and TAB.

"keyseq": function-name or macro
keyseq differs from keyname above in that strings denoting an en-
tire key sequence can be specified, by placing the key sequence in
double quotes. Some gnu Emacs style key escapes can be used, as
in the following example, but the special character names are not
recognized.

"\C-u": universal-argument

"\C-x\C-r": re-read-init-file

"\e[11~": "Function Key 1"

In the above example, C-u is again bound to the function
universal-argument (just as it was in the first example), ‘C-x
C-r’ is bound to the function re-read-init-file, and ‘ESC [1 1

~’ is bound to insert the text ‘Function Key 1’.

The following gnu Emacs style escape sequences are available when specifying
key sequences:

\C- control prefix

\M- meta prefix

\e an escape character

\\ backslash

\" ", a double quotation mark

\’ ’, a single quote or apostrophe

In addition to the gnu Emacs style escape sequences, a second set of backslash
escapes is available:

\a alert (bell)

\b backspace

\d delete

\f form feed

Chapter 8: Command Line Editing 117

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\nnn the eight-bit character whose value is the octal value nnn (one to
three digits)

\xHH the eight-bit character whose value is the hexadecimal value HH
(one or two hex digits)

When entering the text of a macro, single or double quotes must be used to
indicate a macro definition. Unquoted text is assumed to be a function name. In
the macro body, the backslash escapes described above are expanded. Backslash
will quote any other character in the macro text, including ‘"’ and ‘’’. For
example, the following binding will make ‘C-x \’ insert a single ‘\’ into the line:

"\C-x\\": "\\"

8.3.2 Conditional Init Constructs

Readline implements a facility similar in spirit to the conditional compilation features of
the C preprocessor which allows key bindings and variable settings to be performed as the
result of tests. There are four parser directives used.

$if The $if construct allows bindings to be made based on the editing mode, the
terminal being used, or the application using Readline. The text of the test,
after any comparison operator, extends to the end of the line; unless otherwise
noted, no characters are required to isolate it.

mode The mode= form of the $if directive is used to test whether Read-
line is in emacs or vi mode. This may be used in conjunction
with the ‘set keymap’ command, for instance, to set bindings in
the emacs-standard and emacs-ctlx keymaps only if Readline is
starting out in emacs mode.

term The term= form may be used to include terminal-specific key bind-
ings, perhaps to bind the key sequences output by the terminal’s
function keys. The word on the right side of the ‘=’ is tested against
both the full name of the terminal and the portion of the terminal
name before the first ‘-’. This allows sun to match both sun and
sun-cmd, for instance.

version The version test may be used to perform comparisons against
specific Readline versions. The version expands to the current
Readline version. The set of comparison operators includes ‘=’ (and
‘==’), ‘!=’, ‘<=’, ‘>=’, ‘<’, and ‘>’. The version number supplied on
the right side of the operator consists of a major version number,
an optional decimal point, and an optional minor version (e.g.,
‘7.1’). If the minor version is omitted, it is assumed to be ‘0’. The
operator may be separated from the string version and from the

Chapter 8: Command Line Editing 118

version number argument by whitespace. The following example
sets a variable if the Readline version being used is 7.0 or newer:

$if version >= 7.0

set show-mode-in-prompt on

$endif

application

The application construct is used to include application-specific set-
tings. Each program using the Readline library sets the application
name, and you can test for a particular value. This could be used to
bind key sequences to functions useful for a specific program. For
instance, the following command adds a key sequence that quotes
the current or previous word in Bash:

$if Bash

Quote the current or previous word

"\C-xq": "\eb\"\ef\""

$endif

variable The variable construct provides simple equality tests for Readline
variables and values. The permitted comparison operators are ‘=’,
‘==’, and ‘!=’. The variable name must be separated from the
comparison operator by whitespace; the operator may be separated
from the value on the right hand side by whitespace. Both string
and boolean variables may be tested. Boolean variables must be
tested against the values on and off. The following example is
equivalent to the mode=emacs test described above:

$if editing-mode == emacs

set show-mode-in-prompt on

$endif

$endif This command, as seen in the previous example, terminates an $if command.

$else Commands in this branch of the $if directive are executed if the test fails.

$include This directive takes a single filename as an argument and reads commands
and bindings from that file. For example, the following directive reads from
/etc/inputrc:

$include /etc/inputrc

8.3.3 Sample Init File

Here is an example of an inputrc file. This illustrates key binding, variable assignment, and
conditional syntax.

Chapter 8: Command Line Editing 119

This file controls the behaviour of line input editing for

programs that use the GNU Readline library. Existing

programs include FTP, Bash, and GDB.

#

You can re-read the inputrc file with C-x C-r.

Lines beginning with ’#’ are comments.

#

First, include any system-wide bindings and variable

assignments from /etc/Inputrc

$include /etc/Inputrc

#

Set various bindings for emacs mode.

set editing-mode emacs

$if mode=emacs

Meta-Control-h: backward-kill-word Text after the function name is ignored

#

Arrow keys in keypad mode

#

#"\M-OD": backward-char

#"\M-OC": forward-char

#"\M-OA": previous-history

#"\M-OB": next-history

#

Arrow keys in ANSI mode

#

"\M-[D": backward-char

"\M-[C": forward-char

"\M-[A": previous-history

"\M-[B": next-history

#

Arrow keys in 8 bit keypad mode

#

#"\M-\C-OD": backward-char

#"\M-\C-OC": forward-char

#"\M-\C-OA": previous-history

#"\M-\C-OB": next-history

#

Arrow keys in 8 bit ANSI mode

#

#"\M-\C-[D": backward-char

#"\M-\C-[C": forward-char

Chapter 8: Command Line Editing 120

#"\M-\C-[A": previous-history

#"\M-\C-[B": next-history

C-q: quoted-insert

$endif

An old-style binding. This happens to be the default.

TAB: complete

Macros that are convenient for shell interaction

$if Bash

edit the path

"\C-xp": "PATH=${PATH}\e\C-e\C-a\ef\C-f"

prepare to type a quoted word --

insert open and close double quotes

and move to just after the open quote

"\C-x\"": "\"\"\C-b"

insert a backslash (testing backslash escapes

in sequences and macros)

"\C-x\\": "\\"

Quote the current or previous word

"\C-xq": "\eb\"\ef\""

Add a binding to refresh the line, which is unbound

"\C-xr": redraw-current-line

Edit variable on current line.

"\M-\C-v": "\C-a\C-k$\C-y\M-\C-e\C-a\C-y="

$endif

use a visible bell if one is available

set bell-style visible

don’t strip characters to 7 bits when reading

set input-meta on

allow iso-latin1 characters to be inserted rather

than converted to prefix-meta sequences

set convert-meta off

display characters with the eighth bit set directly

rather than as meta-prefixed characters

set output-meta on

if there are more than 150 possible completions for

a word, ask the user if he wants to see all of them

set completion-query-items 150

Chapter 8: Command Line Editing 121

For FTP

$if Ftp

"\C-xg": "get \M-?"

"\C-xt": "put \M-?"

"\M-.": yank-last-arg

$endif

8.4 Bindable Readline Commands

This section describes Readline commands that may be bound to key sequences. You can
list your key bindings by executing bind -P or, for a more terse format, suitable for an
inputrc file, bind -p. (See Section 4.2 [Bash Builtins], page 50.) Command names without
an accompanying key sequence are unbound by default.

In the following descriptions, point refers to the current cursor position, and mark refers
to a cursor position saved by the set-mark command. The text between the point and
mark is referred to as the region.

8.4.1 Commands For Moving

beginning-of-line (C-a)

Move to the start of the current line.

end-of-line (C-e)

Move to the end of the line.

forward-char (C-f)

Move forward a character.

backward-char (C-b)

Move back a character.

forward-word (M-f)

Move forward to the end of the next word. Words are composed of letters and
digits.

backward-word (M-b)

Move back to the start of the current or previous word. Words are composed
of letters and digits.

shell-forward-word ()

Move forward to the end of the next word. Words are delimited by non-quoted
shell metacharacters.

shell-backward-word ()

Move back to the start of the current or previous word. Words are delimited
by non-quoted shell metacharacters.

previous-screen-line ()

Attempt to move point to the same physical screen column on the previous
physical screen line. This will not have the desired effect if the current Readline
line does not take up more than one physical line or if point is not greater than
the length of the prompt plus the screen width.

Chapter 8: Command Line Editing 122

next-screen-line ()

Attempt to move point to the same physical screen column on the next physical
screen line. This will not have the desired effect if the current Readline line does
not take up more than one physical line or if the length of the current Readline
line is not greater than the length of the prompt plus the screen width.

clear-screen (C-l)

Clear the screen and redraw the current line, leaving the current line at the top
of the screen.

redraw-current-line ()

Refresh the current line. By default, this is unbound.

8.4.2 Commands For Manipulating The History

accept-line (Newline or Return)

Accept the line regardless of where the cursor is. If this line is non-empty, add it
to the history list according to the setting of the HISTCONTROL and HISTIGNORE

variables. If this line is a modified history line, then restore the history line to
its original state.

previous-history (C-p)

Move ‘back’ through the history list, fetching the previous command.

next-history (C-n)

Move ‘forward’ through the history list, fetching the next command.

beginning-of-history (M-<)

Move to the first line in the history.

end-of-history (M->)

Move to the end of the input history, i.e., the line currently being entered.

reverse-search-history (C-r)

Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

forward-search-history (C-s)

Search forward starting at the current line and moving ‘down’ through the
history as necessary. This is an incremental search.

non-incremental-reverse-search-history (M-p)

Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary using a non-incremental search for a string supplied by the
user. The search string may match anywhere in a history line.

non-incremental-forward-search-history (M-n)

Search forward starting at the current line and moving ‘down’ through the
history as necessary using a non-incremental search for a string supplied by the
user. The search string may match anywhere in a history line.

history-search-forward ()

Search forward through the history for the string of characters between the
start of the current line and the point. The search string must match at the

Chapter 8: Command Line Editing 123

beginning of a history line. This is a non-incremental search. By default, this
command is unbound.

history-search-backward ()

Search backward through the history for the string of characters between the
start of the current line and the point. The search string must match at the
beginning of a history line. This is a non-incremental search. By default, this
command is unbound.

history-substring-search-forward ()

Search forward through the history for the string of characters between the
start of the current line and the point. The search string may match anywhere
in a history line. This is a non-incremental search. By default, this command
is unbound.

history-substring-search-backward ()

Search backward through the history for the string of characters between the
start of the current line and the point. The search string may match anywhere
in a history line. This is a non-incremental search. By default, this command
is unbound.

yank-nth-arg (M-C-y)

Insert the first argument to the previous command (usually the second word
on the previous line) at point. With an argument n, insert the nth word from
the previous command (the words in the previous command begin with word
0). A negative argument inserts the nth word from the end of the previous
command. Once the argument n is computed, the argument is extracted as if
the ‘!n’ history expansion had been specified.

yank-last-arg (M-. or M-_)

Insert last argument to the previous command (the last word of the previous
history entry). With a numeric argument, behave exactly like yank-nth-arg.
Successive calls to yank-last-arg move back through the history list, inserting
the last word (or the word specified by the argument to the first call) of each line
in turn. Any numeric argument supplied to these successive calls determines
the direction to move through the history. A negative argument switches the
direction through the history (back or forward). The history expansion facilities
are used to extract the last argument, as if the ‘!$’ history expansion had been
specified.

8.4.3 Commands For Changing Text

end-of-file (usually C-d)

The character indicating end-of-file as set, for example, by stty. If this charac-
ter is read when there are no characters on the line, and point is at the beginning
of the line, Readline interprets it as the end of input and returns eof.

delete-char (C-d)

Delete the character at point. If this function is bound to the same character
as the tty eof character, as C-d commonly is, see above for the effects.

Chapter 8: Command Line Editing 124

backward-delete-char (Rubout)

Delete the character behind the cursor. A numeric argument means to kill the
characters instead of deleting them.

forward-backward-delete-char ()

Delete the character under the cursor, unless the cursor is at the end of the
line, in which case the character behind the cursor is deleted. By default, this
is not bound to a key.

quoted-insert (C-q or C-v)

Add the next character typed to the line verbatim. This is how to insert key
sequences like C-q, for example.

self-insert (a, b, A, 1, !, ...)

Insert yourself.

bracketed-paste-begin ()

This function is intended to be bound to the "bracketed paste" escape sequence
sent by some terminals, and such a binding is assigned by default. It allows
Readline to insert the pasted text as a single unit without treating each char-
acter as if it had been read from the keyboard. The characters are inserted
as if each one was bound to self-insert) instead of executing any editing
commands.

transpose-chars (C-t)

Drag the character before the cursor forward over the character at the cursor,
moving the cursor forward as well. If the insertion point is at the end of the
line, then this transposes the last two characters of the line. Negative arguments
have no effect.

transpose-words (M-t)

Drag the word before point past the word after point, moving point past that
word as well. If the insertion point is at the end of the line, this transposes the
last two words on the line.

upcase-word (M-u)

Uppercase the current (or following) word. With a negative argument, upper-
case the previous word, but do not move the cursor.

downcase-word (M-l)

Lowercase the current (or following) word. With a negative argument, lowercase
the previous word, but do not move the cursor.

capitalize-word (M-c)

Capitalize the current (or following) word. With a negative argument, capitalize
the previous word, but do not move the cursor.

overwrite-mode ()

Toggle overwrite mode. With an explicit positive numeric argument, switches
to overwrite mode. With an explicit non-positive numeric argument, switches to
insert mode. This command affects only emacs mode; vi mode does overwrite
differently. Each call to readline() starts in insert mode.

Chapter 8: Command Line Editing 125

In overwrite mode, characters bound to self-insert replace the text at
point rather than pushing the text to the right. Characters bound to
backward-delete-char replace the character before point with a space.

By default, this command is unbound.

8.4.4 Killing And Yanking

kill-line (C-k)

Kill the text from point to the end of the line.

backward-kill-line (C-x Rubout)

Kill backward from the cursor to the beginning of the current line.

unix-line-discard (C-u)

Kill backward from the cursor to the beginning of the current line.

kill-whole-line ()

Kill all characters on the current line, no matter where point is. By default,
this is unbound.

kill-word (M-d)

Kill from point to the end of the current word, or if between words, to the end
of the next word. Word boundaries are the same as forward-word.

backward-kill-word (M-DEL)

Kill the word behind point. Word boundaries are the same as backward-word.

shell-kill-word ()

Kill from point to the end of the current word, or if between words, to the end
of the next word. Word boundaries are the same as shell-forward-word.

shell-backward-kill-word ()

Kill the word behind point. Word boundaries are the same as shell-backward-
word.

unix-word-rubout (C-w)

Kill the word behind point, using white space as a word boundary. The killed
text is saved on the kill-ring.

unix-filename-rubout ()

Kill the word behind point, using white space and the slash character as the
word boundaries. The killed text is saved on the kill-ring.

delete-horizontal-space ()

Delete all spaces and tabs around point. By default, this is unbound.

kill-region ()

Kill the text in the current region. By default, this command is unbound.

copy-region-as-kill ()

Copy the text in the region to the kill buffer, so it can be yanked right away.
By default, this command is unbound.

copy-backward-word ()

Copy the word before point to the kill buffer. The word boundaries are the
same as backward-word. By default, this command is unbound.

Chapter 8: Command Line Editing 126

copy-forward-word ()

Copy the word following point to the kill buffer. The word boundaries are the
same as forward-word. By default, this command is unbound.

yank (C-y)

Yank the top of the kill ring into the buffer at point.

yank-pop (M-y)

Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is yank or yank-pop.

8.4.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)

Add this digit to the argument already accumulating, or start a new argument.
M-- starts a negative argument.

universal-argument ()

This is another way to specify an argument. If this command is followed by one
or more digits, optionally with a leading minus sign, those digits define the ar-
gument. If the command is followed by digits, executing universal-argument

again ends the numeric argument, but is otherwise ignored. As a special case,
if this command is immediately followed by a character that is neither a digit
nor minus sign, the argument count for the next command is multiplied by
four. The argument count is initially one, so executing this function the first
time makes the argument count four, a second time makes the argument count
sixteen, and so on. By default, this is not bound to a key.

8.4.6 Letting Readline Type For You

complete (TAB)

Attempt to perform completion on the text before point. The actual completion
performed is application-specific. Bash attempts completion treating the text
as a variable (if the text begins with ‘$’), username (if the text begins with
‘~’), hostname (if the text begins with ‘@’), or command (including aliases and
functions) in turn. If none of these produces a match, filename completion is
attempted.

possible-completions (M-?)

List the possible completions of the text before point. When displaying com-
pletions, Readline sets the number of columns used for display to the value of
completion-display-width, the value of the environment variable COLUMNS,
or the screen width, in that order.

insert-completions (M-*)

Insert all completions of the text before point that would have been generated
by possible-completions.

menu-complete ()

Similar to complete, but replaces the word to be completed with a single match
from the list of possible completions. Repeated execution of menu-complete
steps through the list of possible completions, inserting each match in turn.

Chapter 8: Command Line Editing 127

At the end of the list of completions, the bell is rung (subject to the setting
of bell-style) and the original text is restored. An argument of n moves n
positions forward in the list of matches; a negative argument may be used to
move backward through the list. This command is intended to be bound to
TAB, but is unbound by default.

menu-complete-backward ()

Identical to menu-complete, but moves backward through the list of possible
completions, as if menu-complete had been given a negative argument.

delete-char-or-list ()

Deletes the character under the cursor if not at the beginning or end of the
line (like delete-char). If at the end of the line, behaves identically to
possible-completions. This command is unbound by default.

complete-filename (M-/)

Attempt filename completion on the text before point.

possible-filename-completions (C-x /)

List the possible completions of the text before point, treating it as a filename.

complete-username (M-~)

Attempt completion on the text before point, treating it as a username.

possible-username-completions (C-x ~)

List the possible completions of the text before point, treating it as a username.

complete-variable (M-$)

Attempt completion on the text before point, treating it as a shell variable.

possible-variable-completions (C-x $)

List the possible completions of the text before point, treating it as a shell
variable.

complete-hostname (M-@)

Attempt completion on the text before point, treating it as a hostname.

possible-hostname-completions (C-x @)

List the possible completions of the text before point, treating it as a hostname.

complete-command (M-!)

Attempt completion on the text before point, treating it as a command name.
Command completion attempts to match the text against aliases, reserved
words, shell functions, shell builtins, and finally executable filenames, in that
order.

possible-command-completions (C-x !)

List the possible completions of the text before point, treating it as a command
name.

dynamic-complete-history (M-TAB)

Attempt completion on the text before point, comparing the text against lines
from the history list for possible completion matches.

Chapter 8: Command Line Editing 128

dabbrev-expand ()

Attempt menu completion on the text before point, comparing the text against
lines from the history list for possible completion matches.

complete-into-braces (M-{)

Perform filename completion and insert the list of possible completions enclosed
within braces so the list is available to the shell (see Section 3.5.1 [Brace Ex-
pansion], page 22).

8.4.7 Keyboard Macros

start-kbd-macro (C-x ()

Begin saving the characters typed into the current keyboard macro.

end-kbd-macro (C-x))

Stop saving the characters typed into the current keyboard macro and save the
definition.

call-last-kbd-macro (C-x e)

Re-execute the last keyboard macro defined, by making the characters in the
macro appear as if typed at the keyboard.

print-last-kbd-macro ()

Print the last keboard macro defined in a format suitable for the inputrc file.

8.4.8 Some Miscellaneous Commands

re-read-init-file (C-x C-r)

Read in the contents of the inputrc file, and incorporate any bindings or variable
assignments found there.

abort (C-g)

Abort the current editing command and ring the terminal’s bell (subject to the
setting of bell-style).

do-lowercase-version (M-A, M-B, M-x, ...)

If the metafied character x is upper case, run the command that is bound to
the corresponding metafied lower case character. The behavior is undefined if
x is already lower case.

prefix-meta (ESC)

Metafy the next character typed. This is for keyboards without a meta key.
Typing ‘ESC f’ is equivalent to typing M-f.

undo (C-_ or C-x C-u)

Incremental undo, separately remembered for each line.

revert-line (M-r)

Undo all changes made to this line. This is like executing the undo command
enough times to get back to the beginning.

tilde-expand (M-&)

Perform tilde expansion on the current word.

Chapter 8: Command Line Editing 129

set-mark (C-@)

Set the mark to the point. If a numeric argument is supplied, the mark is set
to that position.

exchange-point-and-mark (C-x C-x)

Swap the point with the mark. The current cursor position is set to the saved
position, and the old cursor position is saved as the mark.

character-search (C-])

A character is read and point is moved to the next occurrence of that character.
A negative count searches for previous occurrences.

character-search-backward (M-C-])

A character is read and point is moved to the previous occurrence of that
character. A negative count searches for subsequent occurrences.

skip-csi-sequence ()

Read enough characters to consume a multi-key sequence such as those defined
for keys like Home and End. Such sequences begin with a Control Sequence
Indicator (CSI), usually ESC-[. If this sequence is bound to "\e[", keys pro-
ducing such sequences will have no effect unless explicitly bound to a readline
command, instead of inserting stray characters into the editing buffer. This is
unbound by default, but usually bound to ESC-[.

insert-comment (M-#)

Without a numeric argument, the value of the comment-begin variable is in-
serted at the beginning of the current line. If a numeric argument is supplied,
this command acts as a toggle: if the characters at the beginning of the line
do not match the value of comment-begin, the value is inserted, otherwise the
characters in comment-begin are deleted from the beginning of the line. In
either case, the line is accepted as if a newline had been typed. The default
value of comment-begin causes this command to make the current line a shell
comment. If a numeric argument causes the comment character to be removed,
the line will be executed by the shell.

dump-functions ()

Print all of the functions and their key bindings to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

dump-variables ()

Print all of the settable variables and their values to the Readline output stream.
If a numeric argument is supplied, the output is formatted in such a way that
it can be made part of an inputrc file. This command is unbound by default.

dump-macros ()

Print all of the Readline key sequences bound to macros and the strings they
output. If a numeric argument is supplied, the output is formatted in such a
way that it can be made part of an inputrc file. This command is unbound by
default.

Chapter 8: Command Line Editing 130

glob-complete-word (M-g)

The word before point is treated as a pattern for pathname expansion, with an
asterisk implicitly appended. This pattern is used to generate a list of matching
file names for possible completions.

glob-expand-word (C-x *)

The word before point is treated as a pattern for pathname expansion, and
the list of matching file names is inserted, replacing the word. If a numeric
argument is supplied, a ‘*’ is appended before pathname expansion.

glob-list-expansions (C-x g)

The list of expansions that would have been generated by glob-expand-word

is displayed, and the line is redrawn. If a numeric argument is supplied, a ‘*’
is appended before pathname expansion.

display-shell-version (C-x C-v)

Display version information about the current instance of Bash.

shell-expand-line (M-C-e)

Expand the line as the shell does. This performs alias and history expansion
as well as all of the shell word expansions (see Section 3.5 [Shell Expansions],
page 22).

history-expand-line (M-^)

Perform history expansion on the current line.

magic-space ()

Perform history expansion on the current line and insert a space (see Section 9.3
[History Interaction], page 142).

alias-expand-line ()

Perform alias expansion on the current line (see Section 6.6 [Aliases], page 92).

history-and-alias-expand-line ()

Perform history and alias expansion on the current line.

insert-last-argument (M-. or M-_)

A synonym for yank-last-arg.

operate-and-get-next (C-o)

Accept the current line for execution and fetch the next line relative to the
current line from the history for editing. A numeric argument, if supplied,
specifies the history entry to use instead of the current line.

edit-and-execute-command (C-x C-e)

Invoke an editor on the current command line, and execute the result as shell
commands. Bash attempts to invoke $VISUAL, $EDITOR, and emacs as the
editor, in that order.

8.5 Readline vi Mode

While the Readline library does not have a full set of vi editing functions, it does contain
enough to allow simple editing of the line. The Readline vi mode behaves as specified in
the posix standard.

Chapter 8: Command Line Editing 131

In order to switch interactively between emacs and vi editing modes, use the ‘set -o

emacs’ and ‘set -o vi’ commands (see Section 4.3.1 [The Set Builtin], page 61). The
Readline default is emacs mode.

When you enter a line in vi mode, you are already placed in ‘insertion’ mode, as if you
had typed an ‘i’. Pressing ESC switches you into ‘command’ mode, where you can edit the
text of the line with the standard vi movement keys, move to previous history lines with
‘k’ and subsequent lines with ‘j’, and so forth.

8.6 Programmable Completion

When word completion is attempted for an argument to a command for which a completion
specification (a compspec) has been defined using the complete builtin (see Section 8.7
[Programmable Completion Builtins], page 133), the programmable completion facilities
are invoked.

First, the command name is identified. If a compspec has been defined for that command,
the compspec is used to generate the list of possible completions for the word. If the
command word is the empty string (completion attempted at the beginning of an empty
line), any compspec defined with the -E option to complete is used. If the command word
is a full pathname, a compspec for the full pathname is searched for first. If no compspec is
found for the full pathname, an attempt is made to find a compspec for the portion following
the final slash. If those searches do not result in a compspec, any compspec defined with
the -D option to complete is used as the default.

Once a compspec has been found, it is used to generate the list of matching words. If
a compspec is not found, the default Bash completion described above (see Section 8.4.6
[Commands For Completion], page 126) is performed.

First, the actions specified by the compspec are used. Only matches which are prefixed
by the word being completed are returned. When the -f or -d option is used for filename
or directory name completion, the shell variable FIGNORE is used to filter the matches. See
Section 5.2 [Bash Variables], page 72, for a description of FIGNORE.

Any completions specified by a filename expansion pattern to the -G option are generated
next. The words generated by the pattern need not match the word being completed. The
GLOBIGNORE shell variable is not used to filter the matches, but the FIGNORE shell variable
is used.

Next, the string specified as the argument to the -W option is considered. The string
is first split using the characters in the IFS special variable as delimiters. Shell quoting is
honored within the string, in order to provide a mechanism for the words to contain shell
metacharacters or characters in the value of IFS. Each word is then expanded using brace
expansion, tilde expansion, parameter and variable expansion, command substitution, and
arithmetic expansion, as described above (see Section 3.5 [Shell Expansions], page 22). The
results are split using the rules described above (see Section 3.5.7 [Word Splitting], page 31).
The results of the expansion are prefix-matched against the word being completed, and the
matching words become the possible completions.

After these matches have been generated, any shell function or command specified with
the -F and -C options is invoked. When the command or function is invoked, the COMP_

LINE, COMP_POINT, COMP_KEY, and COMP_TYPE variables are assigned values as described
above (see Section 5.2 [Bash Variables], page 72). If a shell function is being invoked, the

Chapter 8: Command Line Editing 132

COMP_WORDS and COMP_CWORD variables are also set. When the function or command is
invoked, the first argument ($1) is the name of the command whose arguments are being
completed, the second argument ($2) is the word being completed, and the third argument
($3) is the word preceding the word being completed on the current command line. No
filtering of the generated completions against the word being completed is performed; the
function or command has complete freedom in generating the matches.

Any function specified with -F is invoked first. The function may use any of the shell
facilities, including the compgen and compopt builtins described below (see Section 8.7
[Programmable Completion Builtins], page 133), to generate the matches. It must put the
possible completions in the COMPREPLY array variable, one per array element.

Next, any command specified with the -C option is invoked in an environment equivalent
to command substitution. It should print a list of completions, one per line, to the standard
output. Backslash may be used to escape a newline, if necessary.

After all of the possible completions are generated, any filter specified with the -X option
is applied to the list. The filter is a pattern as used for pathname expansion; a ‘&’ in the
pattern is replaced with the text of the word being completed. A literal ‘&’ may be escaped
with a backslash; the backslash is removed before attempting a match. Any completion
that matches the pattern will be removed from the list. A leading ‘!’ negates the pattern;
in this case any completion not matching the pattern will be removed. If the nocasematch
shell option (see the description of shopt in Section 4.3.2 [The Shopt Builtin], page 65) is
enabled, the match is performed without regard to the case of alphabetic characters.

Finally, any prefix and suffix specified with the -P and -S options are added to each
member of the completion list, and the result is returned to the Readline completion code
as the list of possible completions.

If the previously-applied actions do not generate any matches, and the -o dirnames op-
tion was supplied to complete when the compspec was defined, directory name completion
is attempted.

If the -o plusdirs option was supplied to complete when the compspec was defined,
directory name completion is attempted and any matches are added to the results of the
other actions.

By default, if a compspec is found, whatever it generates is returned to the completion
code as the full set of possible completions. The default Bash completions are not attempted,
and the Readline default of filename completion is disabled. If the -o bashdefault option
was supplied to complete when the compspec was defined, the default Bash completions are
attempted if the compspec generates no matches. If the -o default option was supplied to
complete when the compspec was defined, Readline’s default completion will be performed
if the compspec (and, if attempted, the default Bash completions) generate no matches.

When a compspec indicates that directory name completion is desired, the programmable
completion functions force Readline to append a slash to completed names which are sym-
bolic links to directories, subject to the value of the mark-directories Readline variable,
regardless of the setting of the mark-symlinked-directories Readline variable.

There is some support for dynamically modifying completions. This is most useful when
used in combination with a default completion specified with -D. It’s possible for shell
functions executed as completion handlers to indicate that completion should be retried by
returning an exit status of 124. If a shell function returns 124, and changes the compspec

Chapter 8: Command Line Editing 133

associated with the command on which completion is being attempted (supplied as the
first argument when the function is executed), programmable completion restarts from the
beginning, with an attempt to find a new compspec for that command. This allows a set of
completions to be built dynamically as completion is attempted, rather than being loaded
all at once.

For instance, assuming that there is a library of compspecs, each kept in a file corre-
sponding to the name of the command, the following default completion function would
load completions dynamically:

_completion_loader()

{

. "/etc/bash_completion.d/$1.sh" >/dev/null 2>&1 && return 124

}

complete -D -F _completion_loader -o bashdefault -o default

8.7 Programmable Completion Builtins

Three builtin commands are available to manipulate the programmable completion facilities:
one to specify how the arguments to a particular command are to be completed, and two
to modify the completion as it is happening.

compgen

compgen [option] [word]

Generate possible completion matches for word according to the options, which
may be any option accepted by the complete builtin with the exception of -p
and -r, and write the matches to the standard output. When using the -F

or -C options, the various shell variables set by the programmable completion
facilities, while available, will not have useful values.

The matches will be generated in the same way as if the programmable com-
pletion code had generated them directly from a completion specification with
the same flags. If word is specified, only those completions matching word will
be displayed.

The return value is true unless an invalid option is supplied, or no matches were
generated.

complete

complete [-abcdefgjksuv] [-o comp-option] [-DE] [-A action] [-

G globpat] [-W wordlist]

[-F function] [-C command] [-X filterpat]

[-P prefix] [-S suffix] name [name ...]

complete -pr [-DE] [name ...]

Specify how arguments to each name should be completed. If the -p option
is supplied, or if no options are supplied, existing completion specifications are
printed in a way that allows them to be reused as input. The -r option removes
a completion specification for each name, or, if no names are supplied, all com-
pletion specifications. The -D option indicates that the remaining options and
actions should apply to the “default” command completion; that is, completion
attempted on a command for which no completion has previously been defined.

Chapter 8: Command Line Editing 134

The -E option indicates that the remaining options and actions should apply to
“empty” command completion; that is, completion attempted on a blank line.

The process of applying these completion specifications when word completion
is attempted is described above (see Section 8.6 [Programmable Completion],
page 131). The -D option takes precedence over -E.

Other options, if specified, have the following meanings. The arguments to the
-G, -W, and -X options (and, if necessary, the -P and -S options) should be
quoted to protect them from expansion before the complete builtin is invoked.

-o comp-option

The comp-option controls several aspects of the compspec’s behav-
ior beyond the simple generation of completions. comp-option may
be one of:

bashdefault

Perform the rest of the default Bash completions if the
compspec generates no matches.

default Use Readline’s default filename completion if the comp-
spec generates no matches.

dirnames Perform directory name completion if the compspec
generates no matches.

filenames

Tell Readline that the compspec generates filenames,
so it can perform any filename-specific processing (like
adding a slash to directory names quoting special char-
acters, or suppressing trailing spaces). This option is
intended to be used with shell functions specified with
-F.

noquote Tell Readline not to quote the completed words if they
are filenames (quoting filenames is the default).

nosort Tell Readline not to sort the list of possible completions
alphabetically.

nospace Tell Readline not to append a space (the default) to
words completed at the end of the line.

plusdirs After any matches defined by the compspec are gener-
ated, directory name completion is attempted and any
matches are added to the results of the other actions.

-A action The action may be one of the following to generate a list of possible
completions:

alias Alias names. May also be specified as -a.

arrayvar Array variable names.

binding Readline key binding names (see Section 8.4 [Bindable
Readline Commands], page 121).

Chapter 8: Command Line Editing 135

builtin Names of shell builtin commands. May also be specified
as -b.

command Command names. May also be specified as -c.

directory

Directory names. May also be specified as -d.

disabled Names of disabled shell builtins.

enabled Names of enabled shell builtins.

export Names of exported shell variables. May also be speci-
fied as -e.

file File names. May also be specified as -f.

function Names of shell functions.

group Group names. May also be specified as -g.

helptopic

Help topics as accepted by the help builtin (see
Section 4.2 [Bash Builtins], page 50).

hostname Hostnames, as taken from the file specified by
the HOSTFILE shell variable (see Section 5.2 [Bash
Variables], page 72).

job Job names, if job control is active. May also be speci-
fied as -j.

keyword Shell reserved words. May also be specified as -k.

running Names of running jobs, if job control is active.

service Service names. May also be specified as -s.

setopt Valid arguments for the -o option to the set builtin
(see Section 4.3.1 [The Set Builtin], page 61).

shopt Shell option names as accepted by the shopt builtin
(see Section 4.2 [Bash Builtins], page 50).

signal Signal names.

stopped Names of stopped jobs, if job control is active.

user User names. May also be specified as -u.

variable Names of all shell variables. May also be specified as
-v.

-C command

command is executed in a subshell environment, and its output is
used as the possible completions.

Chapter 8: Command Line Editing 136

-F function

The shell function function is executed in the current shell envi-
ronment. When it is executed, $1 is the name of the command
whose arguments are being completed, $2 is the word being com-
pleted, and $3 is the word preceding the word being completed,
as described above (see Section 8.6 [Programmable Completion],
page 131). When it finishes, the possible completions are retrieved
from the value of the COMPREPLY array variable.

-G globpat

The filename expansion pattern globpat is expanded to generate
the possible completions.

-P prefix prefix is added at the beginning of each possible completion after
all other options have been applied.

-S suffix suffix is appended to each possible completion after all other options
have been applied.

-W wordlist

The wordlist is split using the characters in the IFS special variable
as delimiters, and each resultant word is expanded. The possible
completions are the members of the resultant list which match the
word being completed.

-X filterpat

filterpat is a pattern as used for filename expansion. It is applied to
the list of possible completions generated by the preceding options
and arguments, and each completion matching filterpat is removed
from the list. A leading ‘!’ in filterpat negates the pattern; in this
case, any completion not matching filterpat is removed.

The return value is true unless an invalid option is supplied, an option other
than -p or -r is supplied without a name argument, an attempt is made to
remove a completion specification for a name for which no specification exists,
or an error occurs adding a completion specification.

compopt

compopt [-o option] [-DE] [+o option] [name]

Modify completion options for each name according to the options, or for the
currently-executing completion if no names are supplied. If no options are
given, display the completion options for each name or the current completion.
The possible values of option are those valid for the complete builtin described
above. The -D option indicates that the remaining options should apply to the
“default” command completion; that is, completion attempted on a command
for which no completion has previously been defined. The -E option indicates
that the remaining options should apply to “empty” command completion; that
is, completion attempted on a blank line.

The -D option takes precedence over -E.

Chapter 8: Command Line Editing 137

The return value is true unless an invalid option is supplied, an attempt is made
to modify the options for a name for which no completion specification exists,
or an output error occurs.

8.8 A Programmable Completion Example

The most common way to obtain additional completion functionality beyond the default
actions complete and compgen provide is to use a shell function and bind it to a particular
command using complete -F.

The following function provides completions for the cd builtin. It is a reasonably good
example of what shell functions must do when used for completion. This function uses
the word passed as $2 to determine the directory name to complete. You can also use the
COMP_WORDS array variable; the current word is indexed by the COMP_CWORD variable.

The function relies on the complete and compgen builtins to do much of the work,
adding only the things that the Bash cd does beyond accepting basic directory names: tilde
expansion (see Section 3.5.2 [Tilde Expansion], page 23), searching directories in $CDPATH,
which is described above (see Section 4.1 [Bourne Shell Builtins], page 43), and basic support
for the cdable_vars shell option (see Section 4.3.2 [The Shopt Builtin], page 65). _comp_
cd modifies the value of IFS so that it contains only a newline to accommodate file names
containing spaces and tabs – compgen prints the possible completions it generates one per
line.

Possible completions go into the COMPREPLY array variable, one completion per array
element. The programmable completion system retrieves the completions from there when
the function returns.

A completion function for the cd builtin

based on the cd completion function from the bash_completion package

_comp_cd()

{

local IFS=$’ \t\n’ # normalize IFS

local cur _skipdot _cdpath

local i j k

Tilde expansion, with side effect of expanding tilde to full pathname

case "$2" in

\~*) eval cur="$2" ;;

*) cur=$2 ;;

esac

no cdpath or absolute pathname -- straight directory completion

if [[-z "${CDPATH:-}"]] || [["$cur" == @(./*|../*|/*)]]; then

compgen prints paths one per line; could also use while loop

IFS=$’\n’

COMPREPLY=($(compgen -d -- "$cur"))

IFS=$’ \t\n’

CDPATH+directories in the current directory if not in CDPATH

else

Chapter 8: Command Line Editing 138

IFS=$’\n’

_skipdot=false

preprocess CDPATH to convert null directory names to .

_cdpath=${CDPATH/#:/.:}

_cdpath=${_cdpath//::/:.:}

_cdpath=${_cdpath/%:/:.}

for i in ${_cdpath//:/$’\n’}; do

if [[$i -ef .]]; then _skipdot=true; fi

k="${#COMPREPLY[@]}"

for j in $(compgen -d -- "$i/$cur"); do

COMPREPLY[k++]=${j#$i/} # cut off directory

done

done

$_skipdot || COMPREPLY+=($(compgen -d -- "$cur"))

IFS=$’ \t\n’

fi

variable names if appropriate shell option set and no completions

if shopt -q cdable_vars && [[${#COMPREPLY[@]} -eq 0]]; then

COMPREPLY=($(compgen -v -- "$cur"))

fi

return 0

}

We install the completion function using the -F option to complete:

Tell readline to quote appropriate and append slashes to directories;

use the bash default completion for other arguments

complete -o filenames -o nospace -o bashdefault -F _comp_cd cd

Since we’d like Bash and Readline to take care of some of the other details for us, we use
several other options to tell Bash and Readline what to do. The -o filenames option
tells Readline that the possible completions should be treated as filenames, and quoted
appropriately. That option will also cause Readline to append a slash to filenames it can
determine are directories (which is why we might want to extend _comp_cd to append a
slash if we’re using directories found via CDPATH : Readline can’t tell those completions are
directories). The -o nospace option tells Readline to not append a space character to the
directory name, in case we want to append to it. The -o bashdefault option brings in the
rest of the "Bash default" completions – possible completion that Bash adds to the default
Readline set. These include things like command name completion, variable completion
for words beginning with ‘{’, completions containing pathname expansion patterns (see
Section 3.5.8 [Filename Expansion], page 31), and so on.

Once installed using complete, _comp_cd will be called every time we attempt word
completion for a cd command.

Many more examples – an extensive collection of completions for most of the common
GNU, Unix, and Linux commands – are available as part of the bash completion project.
This is installed by default on many GNU/Linux distributions. Originally written by Ian

Chapter 8: Command Line Editing 139

Macdonald, the project now lives at http://bash-completion.alioth.debian.org/ .
There are ports for other systems such as Solaris and Mac OS X.

An older version of the bash completion package is distributed with bash in the
examples/complete subdirectory.

http://bash-completion.alioth.debian.org/

140

9 Using History Interactively

This chapter describes how to use the gnu History Library interactively, from a user’s
standpoint. It should be considered a user’s guide. For information on using the gnu
History Library in other programs, see the gnu Readline Library Manual.

9.1 Bash History Facilities

When the -o history option to the set builtin is enabled (see Section 4.3.1 [The Set
Builtin], page 61), the shell provides access to the command history, the list of commands
previously typed. The value of the HISTSIZE shell variable is used as the number of com-
mands to save in a history list. The text of the last $HISTSIZE commands (default 500)
is saved. The shell stores each command in the history list prior to parameter and vari-
able expansion but after history expansion is performed, subject to the values of the shell
variables HISTIGNORE and HISTCONTROL.

When the shell starts up, the history is initialized from the file named by the HISTFILE
variable (default ~/.bash_history). The file named by the value of HISTFILE is truncated,
if necessary, to contain no more than the number of lines specified by the value of the
HISTFILESIZE variable. When a shell with history enabled exits, the last $HISTSIZE lines
are copied from the history list to the file named by $HISTFILE. If the histappend shell
option is set (see Section 4.2 [Bash Builtins], page 50), the lines are appended to the history
file, otherwise the history file is overwritten. If HISTFILE is unset, or if the history file is
unwritable, the history is not saved. After saving the history, the history file is truncated
to contain no more than $HISTFILESIZE lines. If HISTFILESIZE is unset, or set to null, a
non-numeric value, or a numeric value less than zero, the history file is not truncated.

If the HISTTIMEFORMAT is set, the time stamp information associated with each history
entry is written to the history file, marked with the history comment character. When the
history file is read, lines beginning with the history comment character followed immediately
by a digit are interpreted as timestamps for the following history entry.

The builtin command fcmay be used to list or edit and re-execute a portion of the history
list. The history builtin may be used to display or modify the history list and manipulate
the history file. When using command-line editing, search commands are available in each
editing mode that provide access to the history list (see Section 8.4.2 [Commands For
History], page 122).

The shell allows control over which commands are saved on the history list. The
HISTCONTROL and HISTIGNORE variables may be set to cause the shell to save only a subset
of the commands entered. The cmdhist shell option, if enabled, causes the shell to attempt
to save each line of a multi-line command in the same history entry, adding semicolons where
necessary to preserve syntactic correctness. The lithist shell option causes the shell to
save the command with embedded newlines instead of semicolons. The shopt builtin is
used to set these options. See Section 4.3.2 [The Shopt Builtin], page 65, for a description
of shopt.

9.2 Bash History Builtins

Bash provides two builtin commands which manipulate the history list and history file.

Chapter 9: Using History Interactively 141

fc

fc [-e ename] [-lnr] [first] [last]

fc -s [pat=rep] [command]

The first form selects a range of commands from first to last from the history list
and displays or edits and re-executes them. Both first and last may be specified
as a string (to locate the most recent command beginning with that string) or
as a number (an index into the history list, where a negative number is used as
an offset from the current command number). If last is not specified, it is set to
first. If first is not specified, it is set to the previous command for editing and
−16 for listing. If the -l flag is given, the commands are listed on standard
output. The -n flag suppresses the command numbers when listing. The -r

flag reverses the order of the listing. Otherwise, the editor given by ename is
invoked on a file containing those commands. If ename is not given, the value
of the following variable expansion is used: ${FCEDIT:-${EDITOR:-vi}}. This
says to use the value of the FCEDIT variable if set, or the value of the EDITOR

variable if that is set, or vi if neither is set. When editing is complete, the
edited commands are echoed and executed.

In the second form, command is re-executed after each instance of pat in the
selected command is replaced by rep. command is intepreted the same as first
above.

A useful alias to use with the fc command is r=’fc -s’, so that typing ‘r cc’
runs the last command beginning with cc and typing ‘r’ re-executes the last
command (see Section 6.6 [Aliases], page 92).

history

history [n]

history -c

history -d offset

history -d start-end

history [-anrw] [filename]

history -ps arg

With no options, display the history list with line numbers. Lines prefixed with
a ‘*’ have been modified. An argument of n lists only the last n lines. If the
shell variable HISTTIMEFORMAT is set and not null, it is used as a format string
for strftime to display the time stamp associated with each displayed history
entry. No intervening blank is printed between the formatted time stamp and
the history line.

Options, if supplied, have the following meanings:

-c Clear the history list. This may be combined with the other options
to replace the history list completely.

-d offset Delete the history entry at position offset. If offset is positive, it
should be specified as it appears when the history is displayed. If
offset is negative, it is interpreted as relative to one greater than the
last history position, so negative indices count back from the end
of the history, and an index of ‘-1’ refers to the current history
-d command.

Chapter 9: Using History Interactively 142

-d start-end

Delete the history entries between positions start and end, inclusive.
Positive and negative values for start and end are interpreted as
described above.

-a Append the new history lines to the history file. These are history
lines entered since the beginning of the current Bash session, but
not already appended to the history file.

-n Append the history lines not already read from the history file to
the current history list. These are lines appended to the history file
since the beginning of the current Bash session.

-r Read the history file and append its contents to the history list.

-w Write out the current history list to the history file.

-p Perform history substitution on the args and display the result on
the standard output, without storing the results in the history list.

-s The args are added to the end of the history list as a single entry.

When any of the -w, -r, -a, or -n options is used, if filename is given, then it is
used as the history file. If not, then the value of the HISTFILE variable is used.

9.3 History Expansion

The History library provides a history expansion feature that is similar to the history
expansion provided by csh. This section describes the syntax used to manipulate the
history information.

History expansions introduce words from the history list into the input stream, making
it easy to repeat commands, insert the arguments to a previous command into the current
input line, or fix errors in previous commands quickly.

History expansion is performed immediately after a complete line is read, before the shell
breaks it into words, and is performed on each line individually without taking quoting on
previous lines into account.

History expansion takes place in two parts. The first is to determine which line from the
history list should be used during substitution. The second is to select portions of that line
for inclusion into the current one. The line selected from the history is called the event, and
the portions of that line that are acted upon are called words. Variousmodifiers are available
to manipulate the selected words. The line is broken into words in the same fashion that
Bash does, so that several words surrounded by quotes are considered one word. History
expansions are introduced by the appearance of the history expansion character, which is
‘!’ by default. Only ‘\’ and ‘’’ may be used to escape the history expansion character,
but the history expansion character is also treated as quoted if it immediately precedes the
closing double quote in a double-quoted string.

Several shell options settable with the shopt builtin (see Section 4.3.2 [The Shopt
Builtin], page 65) may be used to tailor the behavior of history expansion. If the histverify
shell option is enabled, and Readline is being used, history substitutions are not immedi-
ately passed to the shell parser. Instead, the expanded line is reloaded into the Readline

Chapter 9: Using History Interactively 143

editing buffer for further modification. If Readline is being used, and the histreedit shell
option is enabled, a failed history expansion will be reloaded into the Readline editing buffer
for correction. The -p option to the history builtin command may be used to see what a
history expansion will do before using it. The -s option to the history builtin may be used
to add commands to the end of the history list without actually executing them, so that
they are available for subsequent recall. This is most useful in conjunction with Readline.

The shell allows control of the various characters used by the history expansion mech-
anism with the histchars variable, as explained above (see Section 5.2 [Bash Variables],
page 72). The shell uses the history comment character to mark history timestamps when
writing the history file.

9.3.1 Event Designators

An event designator is a reference to a command line entry in the history list. Unless the
reference is absolute, events are relative to the current position in the history list.

! Start a history substitution, except when followed by a space, tab, the end of
the line, ‘=’ or ‘(’ (when the extglob shell option is enabled using the shopt

builtin).

!n Refer to command line n.

!-n Refer to the command n lines back.

!! Refer to the previous command. This is a synonym for ‘!-1’.

!string Refer to the most recent command preceding the current position in the history
list starting with string.

!?string[?]

Refer to the most recent command preceding the current position in the history
list containing string. The trailing ‘?’ may be omitted if the string is followed
immediately by a newline.

^string1^string2^

Quick Substitution. Repeat the last command, replacing string1 with string2.
Equivalent to !!:s/string1/string2/.

!# The entire command line typed so far.

9.3.2 Word Designators

Word designators are used to select desired words from the event. A ‘:’ separates the event
specification from the word designator. It may be omitted if the word designator begins
with a ‘^’, ‘$’, ‘*’, ‘-’, or ‘%’. Words are numbered from the beginning of the line, with the
first word being denoted by 0 (zero). Words are inserted into the current line separated by
single spaces.

For example,

!! designates the preceding command. When you type this, the preceding com-
mand is repeated in toto.

!!:$ designates the last argument of the preceding command. This may be shortened
to !$.

Chapter 9: Using History Interactively 144

!fi:2 designates the second argument of the most recent command starting with the
letters fi.

Here are the word designators:

0 (zero) The 0th word. For many applications, this is the command word.

n The nth word.

^ The first argument; that is, word 1.

$ The last argument.

% The word matched by the most recent ‘?string?’ search.

x-y A range of words; ‘-y’ abbreviates ‘0-y’.

* All of the words, except the 0th. This is a synonym for ‘1-$’. It is not an error
to use ‘*’ if there is just one word in the event; the empty string is returned in
that case.

x* Abbreviates ‘x-$’

x- Abbreviates ‘x-$’ like ‘x*’, but omits the last word.

If a word designator is supplied without an event specification, the previous command
is used as the event.

9.3.3 Modifiers

After the optional word designator, you can add a sequence of one or more of the following
modifiers, each preceded by a ‘:’.

h Remove a trailing pathname component, leaving only the head.

t Remove all leading pathname components, leaving the tail.

r Remove a trailing suffix of the form ‘.suffix’, leaving the basename.

e Remove all but the trailing suffix.

p Print the new command but do not execute it.

q Quote the substituted words, escaping further substitutions.

x Quote the substituted words as with ‘q’, but break into words at spaces, tabs,
and newlines.

s/old/new/

Substitute new for the first occurrence of old in the event line. Any delimiter
may be used in place of ‘/’. The delimiter may be quoted in old and new with a
single backslash. If ‘&’ appears in new, it is replaced by old. A single backslash
will quote the ‘&’. The final delimiter is optional if it is the last character on
the input line.

& Repeat the previous substitution.

g

a Cause changes to be applied over the entire event line. Used in conjunction
with ‘s’, as in gs/old/new/, or with ‘&’.

G Apply the following ‘s’ modifier once to each word in the event.

145

10 Installing Bash

This chapter provides basic instructions for installing Bash on the various supported plat-
forms. The distribution supports the gnu operating systems, nearly every version of Unix,
and several non-Unix systems such as BeOS and Interix. Other independent ports exist for
ms-dos, os/2, and Windows platforms.

10.1 Basic Installation

These are installation instructions for Bash.

The simplest way to compile Bash is:

1. cd to the directory containing the source code and type ‘./configure’ to configure
Bash for your system. If you’re using csh on an old version of System V, you might
need to type ‘sh ./configure’ instead to prevent csh from trying to execute configure
itself.

Running configure takes some time. While running, it prints messages telling which
features it is checking for.

2. Type ‘make’ to compile Bash and build the bashbug bug reporting script.

3. Optionally, type ‘make tests’ to run the Bash test suite.

4. Type ‘make install’ to install bash and bashbug. This will also install the manual
pages and Info file.

The configure shell script attempts to guess correct values for various system-dependent
variables used during compilation. It uses those values to create a Makefile in each direc-
tory of the package (the top directory, the builtins, doc, and support directories, each
directory under lib, and several others). It also creates a config.h file containing system-
dependent definitions. Finally, it creates a shell script named config.status that you can
run in the future to recreate the current configuration, a file config.cache that saves the
results of its tests to speed up reconfiguring, and a file config.log containing compiler
output (useful mainly for debugging configure). If at some point config.cache contains
results you don’t want to keep, you may remove or edit it.

To find out more about the options and arguments that the configure script under-
stands, type

bash-4.2$./configure --help

at the Bash prompt in your Bash source directory.

If you want to build Bash in a directory separate from the source directory – to build
for multiple architectures, for example – just use the full path to the configure script. The
following commands will build bash in a directory under /usr/local/build from the source
code in /usr/local/src/bash-4.4:

mkdir /usr/local/build/bash-4.4

cd /usr/local/build/bash-4.4

bash /usr/local/src/bash-4.4/configure

make

See Section 10.3 [Compiling For Multiple Architectures], page 146, for more information
about building in a directory separate from the source.

Chapter 10: Installing Bash 146

If you need to do unusual things to compile Bash, please try to figure out how
configure could check whether or not to do them, and mail diffs or instructions to
bash-maintainers@gnu.org so they can be considered for the next release.

The file configure.ac is used to create configure by a program called Autoconf. You
only need configure.ac if you want to change it or regenerate configure using a newer
version of Autoconf. If you do this, make sure you are using Autoconf version 2.50 or newer.

You can remove the program binaries and object files from the source code directory by
typing ‘make clean’. To also remove the files that configure created (so you can compile
Bash for a different kind of computer), type ‘make distclean’.

10.2 Compilers and Options

Some systems require unusual options for compilation or linking that the configure script
does not know about. You can give configure initial values for variables by setting them
in the environment. Using a Bourne-compatible shell, you can do that on the command
line like this:

CC=c89 CFLAGS=-O2 LIBS=-lposix ./configure

On systems that have the env program, you can do it like this:

env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure

The configuration process uses GCC to build Bash if it is available.

10.3 Compiling For Multiple Architectures

You can compile Bash for more than one kind of computer at the same time, by placing the
object files for each architecture in their own directory. To do this, you must use a version
of make that supports the VPATH variable, such as GNU make. cd to the directory where
you want the object files and executables to go and run the configure script from the
source directory (see Section 10.1 [Basic Installation], page 145). You may need to supply
the --srcdir=PATH argument to tell configure where the source files are. configure

automatically checks for the source code in the directory that configure is in and in ‘..’.

If you have to use a make that does not supports the VPATH variable, you can compile Bash
for one architecture at a time in the source code directory. After you have installed Bash
for one architecture, use ‘make distclean’ before reconfiguring for another architecture.

Alternatively, if your system supports symbolic links, you can use the support/mkclone
script to create a build tree which has symbolic links back to each file in the source directory.
Here’s an example that creates a build directory in the current directory from a source
directory /usr/gnu/src/bash-2.0:

bash /usr/gnu/src/bash-2.0/support/mkclone -s /usr/gnu/src/bash-2.0 .

The mkclone script requires Bash, so you must have already built Bash for at least one
architecture before you can create build directories for other architectures.

10.4 Installation Names

By default, ‘make install’ will install into /usr/local/bin, /usr/local/man, etc. You
can specify an installation prefix other than /usr/local by giving configure the option

mailto:bash-maintainers@gnu.org

Chapter 10: Installing Bash 147

--prefix=PATH, or by specifying a value for the DESTDIR ‘make’ variable when running
‘make install’.

You can specify separate installation prefixes for architecture-specific files and
architecture-independent files. If you give configure the option --exec-prefix=PATH,
‘make install’ will use PATH as the prefix for installing programs and libraries.
Documentation and other data files will still use the regular prefix.

10.5 Specifying the System Type

There may be some features configure can not figure out automatically, but need to
determine by the type of host Bash will run on. Usually configure can figure that out, but
if it prints a message saying it can not guess the host type, give it the --host=TYPE option.
‘TYPE’ can either be a short name for the system type, such as ‘sun4’, or a canonical name
with three fields: ‘CPU-COMPANY-SYSTEM’ (e.g., ‘i386-unknown-freebsd4.2’).

See the file support/config.sub for the possible values of each field.

10.6 Sharing Defaults

If you want to set default values for configure scripts to share, you can create a site
shell script called config.site that gives default values for variables like CC, cache_

file, and prefix. configure looks for PREFIX/share/config.site if it exists, then
PREFIX/etc/config.site if it exists. Or, you can set the CONFIG_SITE environment vari-
able to the location of the site script. A warning: the Bash configure looks for a site
script, but not all configure scripts do.

10.7 Operation Controls

configure recognizes the following options to control how it operates.

--cache-file=file

Use and save the results of the tests in file instead of ./config.cache. Set file
to /dev/null to disable caching, for debugging configure.

--help Print a summary of the options to configure, and exit.

--quiet

--silent

-q Do not print messages saying which checks are being made.

--srcdir=dir

Look for the Bash source code in directory dir. Usually configure can deter-
mine that directory automatically.

--version

Print the version of Autoconf used to generate the configure script, and exit.

configure also accepts some other, not widely used, boilerplate options. ‘configure
--help’ prints the complete list.

Chapter 10: Installing Bash 148

10.8 Optional Features

The Bash configure has a number of --enable-feature options, where feature indicates
an optional part of Bash. There are also several --with-package options, where package
is something like ‘bash-malloc’ or ‘purify’. To turn off the default use of a package, use
--without-package. To configure Bash without a feature that is enabled by default, use
--disable-feature.

Here is a complete list of the --enable- and --with- options that the Bash configure

recognizes.

--with-afs

Define if you are using the Andrew File System from Transarc.

--with-bash-malloc

Use the Bash version of malloc in the directory lib/malloc. This is not the
same malloc that appears in gnu libc, but an older version originally derived
from the 4.2 bsd malloc. This malloc is very fast, but wastes some space on
each allocation. This option is enabled by default. The NOTES file contains a
list of systems for which this should be turned off, and configure disables this
option automatically for a number of systems.

--with-curses

Use the curses library instead of the termcap library. This should be supplied
if your system has an inadequate or incomplete termcap database.

--with-gnu-malloc

A synonym for --with-bash-malloc.

--with-installed-readline[=PREFIX]

Define this to make Bash link with a locally-installed version of Readline rather
than the version in lib/readline. This works only with Readline 5.0 and later
versions. If PREFIX is yes or not supplied, configure uses the values of the
make variables includedir and libdir, which are subdirectories of prefix by
default, to find the installed version of Readline if it is not in the standard
system include and library directories. If PREFIX is no, Bash links with the
version in lib/readline. If PREFIX is set to any other value, configure
treats it as a directory pathname and looks for the installed version of Readline
in subdirectories of that directory (include files in PREFIX/include and the
library in PREFIX/lib).

--with-purify

Define this to use the Purify memory allocation checker from Rational Software.

--enable-minimal-config

This produces a shell with minimal features, close to the historical Bourne shell.

There are several --enable- options that alter how Bash is compiled and linked, rather
than changing run-time features.

--enable-largefile

Enable support for large files (http://www.sas.com/standards/large_file/
x_open.20Mar96.html) if the operating system requires special compiler op-

http://www.sas.com/standards/large_file/x_open.20Mar96.html
http://www.sas.com/standards/large_file/x_open.20Mar96.html

Chapter 10: Installing Bash 149

tions to build programs which can access large files. This is enabled by default,
if the operating system provides large file support.

--enable-profiling

This builds a Bash binary that produces profiling information to be processed
by gprof each time it is executed.

--enable-static-link

This causes Bash to be linked statically, if gcc is being used. This could be
used to build a version to use as root’s shell.

The ‘minimal-config’ option can be used to disable all of the following options, but it
is processed first, so individual options may be enabled using ‘enable-feature’.

All of the following options except for ‘disabled-builtins’, ‘direxpand-default’, and
‘xpg-echo-default’ are enabled by default, unless the operating system does not provide
the necessary support.

--enable-alias

Allow alias expansion and include the alias and unalias builtins (see
Section 6.6 [Aliases], page 92).

--enable-arith-for-command

Include support for the alternate form of the for command that behaves like the
C language for statement (see Section 3.2.4.1 [Looping Constructs], page 10).

--enable-array-variables

Include support for one-dimensional array shell variables (see Section 6.7 [Ar-
rays], page 93).

--enable-bang-history

Include support for csh-like history substitution (see Section 9.3 [History In-
teraction], page 142).

--enable-brace-expansion

Include csh-like brace expansion (b{a,b}c 7→ bac bbc). See Section 3.5.1
[Brace Expansion], page 22, for a complete description.

--enable-casemod-attributes

Include support for case-modifying attributes in the declare builtin and as-
signment statements. Variables with the uppercase attribute, for example, will
have their values converted to uppercase upon assignment.

--enable-casemod-expansion

Include support for case-modifying word expansions.

--enable-command-timing

Include support for recognizing time as a reserved word and for displaying
timing statistics for the pipeline following time (see Section 3.2.2 [Pipelines],
page 8). This allows pipelines as well as shell builtins and functions to be timed.

--enable-cond-command

Include support for the [[conditional command. (see Section 3.2.4.2 [Condi-
tional Constructs], page 11).

Chapter 10: Installing Bash 150

--enable-cond-regexp

Include support for matching posix regular expressions using the ‘=~’ binary
operator in the [[conditional command. (see Section 3.2.4.2 [Conditional Con-
structs], page 11).

--enable-coprocesses

Include support for coprocesses and the coproc reserved word (see Section 3.2.2
[Pipelines], page 8).

--enable-debugger

Include support for the bash debugger (distributed separately).

--enable-dev-fd-stat-broken

If calling stat on /dev/fd/N returns different results than calling fstat on file
descriptor N, supply this option to enable a workaround. This has implications
for conditional commands that test file attributes.

--enable-direxpand-default

Cause the direxpand shell option (see Section 4.3.2 [The Shopt Builtin],
page 65) to be enabled by default when the shell starts. It is normally disabled
by default.

--enable-directory-stack

Include support for a csh-like directory stack and the pushd, popd, and dirs

builtins (see Section 6.8 [The Directory Stack], page 95).

--enable-disabled-builtins

Allow builtin commands to be invoked via ‘builtin xxx’ even after xxx has
been disabled using ‘enable -n xxx’. See Section 4.2 [Bash Builtins], page 50,
for details of the builtin and enable builtin commands.

--enable-dparen-arithmetic

Include support for the ((...)) command (see Section 3.2.4.2 [Conditional
Constructs], page 11).

--enable-extended-glob

Include support for the extended pattern matching features described above
under Section 3.5.8.1 [Pattern Matching], page 32.

--enable-extended-glob-default

Set the default value of the extglob shell option described above under
Section 4.3.2 [The Shopt Builtin], page 65, to be enabled.

--enable-function-import

Include support for importing function definitions exported by another instance
of the shell from the environment. This option is enabled by default.

--enable-glob-asciirange-default

Set the default value of the globasciiranges shell option described above under
Section 4.3.2 [The Shopt Builtin], page 65, to be enabled. This controls the
behavior of character ranges when used in pattern matching bracket expressions.

--enable-help-builtin

Include the help builtin, which displays help on shell builtins and variables (see
Section 4.2 [Bash Builtins], page 50).

Chapter 10: Installing Bash 151

--enable-history

Include command history and the fc and history builtin commands (see
Section 9.1 [Bash History Facilities], page 140).

--enable-job-control

This enables the job control features (see Chapter 7 [Job Control], page 102),
if the operating system supports them.

--enable-multibyte

This enables support for multibyte characters if the operating system provides
the necessary support.

--enable-net-redirections

This enables the special handling of filenames of the form /dev/tcp/host/port

and /dev/udp/host/port when used in redirections (see Section 3.6 [Redirec-
tions], page 33).

--enable-process-substitution

This enables process substitution (see Section 3.5.6 [Process Substitution],
page 30) if the operating system provides the necessary support.

--enable-progcomp

Enable the programmable completion facilities (see Section 8.6 [Programmable
Completion], page 131). If Readline is not enabled, this option has no effect.

--enable-prompt-string-decoding

Turn on the interpretation of a number of backslash-escaped characters in the
$PS0, $PS1, $PS2, and $PS4 prompt strings. See Section 6.9 [Controlling the
Prompt], page 96, for a complete list of prompt string escape sequences.

--enable-readline

Include support for command-line editing and history with the Bash version of
the Readline library (see Chapter 8 [Command Line Editing], page 106).

--enable-restricted

Include support for a restricted shell. If this is enabled, Bash, when called
as rbash, enters a restricted mode. See Section 6.10 [The Restricted Shell],
page 97, for a description of restricted mode.

--enable-select

Include the select compound command, which allows the generation of simple
menus (see Section 3.2.4.2 [Conditional Constructs], page 11).

--enable-separate-helpfiles

Use external files for the documentation displayed by the help builtin instead
of storing the text internally.

--enable-single-help-strings

Store the text displayed by the help builtin as a single string for each help
topic. This aids in translating the text to different languages. You may need
to disable this if your compiler cannot handle very long string literals.

--enable-strict-posix-default

Make Bash posix-conformant by default (see Section 6.11 [Bash POSIX Mode],
page 98).

Chapter 10: Installing Bash 152

--enable-usg-echo-default

A synonym for --enable-xpg-echo-default.

--enable-xpg-echo-default

Make the echo builtin expand backslash-escaped characters by default, without
requiring the -e option. This sets the default value of the xpg_echo shell option
to on, which makes the Bash echo behave more like the version specified in the
Single Unix Specification, version 3. See Section 4.2 [Bash Builtins], page 50,
for a description of the escape sequences that echo recognizes.

The file config-top.h contains C Preprocessor ‘#define’ statements for options which
are not settable from configure. Some of these are not meant to be changed; beware of
the consequences if you do. Read the comments associated with each definition for more
information about its effect.

153

Appendix A Reporting Bugs

Please report all bugs you find in Bash. But first, you should make sure that it really is a
bug, and that it appears in the latest version of Bash. The latest version of Bash is always
available for FTP from ftp://ftp.gnu.org/pub/gnu/bash/.

Once you have determined that a bug actually exists, use the bashbug command to
submit a bug report. If you have a fix, you are encouraged to mail that as well! Suggestions
and ‘philosophical’ bug reports may be mailed to bug-bash@gnu.org or posted to the Usenet
newsgroup gnu.bash.bug.

All bug reports should include:

• The version number of Bash.

• The hardware and operating system.

• The compiler used to compile Bash.

• A description of the bug behaviour.

• A short script or ‘recipe’ which exercises the bug and may be used to reproduce it.

bashbug inserts the first three items automatically into the template it provides for filing a
bug report.

Please send all reports concerning this manual to bug-bash@gnu.org.

ftp://ftp.gnu.org/pub/gnu/bash/
mailto:bug-bash@gnu.org
mailto:bug-bash@gnu.org

154

Appendix B Major Differences From The Bourne
Shell

Bash implements essentially the same grammar, parameter and variable expansion, redirec-
tion, and quoting as the Bourne Shell. Bash uses the posix standard as the specification of
how these features are to be implemented. There are some differences between the tradi-
tional Bourne shell and Bash; this section quickly details the differences of significance. A
number of these differences are explained in greater depth in previous sections. This section
uses the version of sh included in SVR4.2 (the last version of the historical Bourne shell)
as the baseline reference.

• Bash is posix-conformant, even where the posix specification differs from traditional
sh behavior (see Section 6.11 [Bash POSIX Mode], page 98).

• Bash has multi-character invocation options (see Section 6.1 [Invoking Bash], page 84).

• Bash has command-line editing (see Chapter 8 [Command Line Editing], page 106)
and the bind builtin.

• Bash provides a programmable word completion mechanism (see Section 8.6 [Pro-
grammable Completion], page 131), and builtin commands complete, compgen, and
compopt, to manipulate it.

• Bash has command history (see Section 9.1 [Bash History Facilities], page 140) and the
history and fc builtins to manipulate it. The Bash history list maintains timestamp
information and uses the value of the HISTTIMEFORMAT variable to display it.

• Bash implements csh-like history expansion (see Section 9.3 [History Interaction],
page 142).

• Bash has one-dimensional array variables (see Section 6.7 [Arrays], page 93), and the
appropriate variable expansions and assignment syntax to use them. Several of the
Bash builtins take options to act on arrays. Bash provides a number of built-in array
variables.

• The $’...’ quoting syntax, which expands ANSI-C backslash-escaped characters in
the text between the single quotes, is supported (see Section 3.1.2.4 [ANSI-C Quoting],
page 6).

• Bash supports the $"..." quoting syntax to do locale-specific translation of the char-
acters between the double quotes. The -D, --dump-strings, and --dump-po-strings

invocation options list the translatable strings found in a script (see Section 3.1.2.5
[Locale Translation], page 7).

• Bash implements the ! keyword to negate the return value of a pipeline (see
Section 3.2.2 [Pipelines], page 8). Very useful when an if statement needs to act only
if a test fails. The Bash ‘-o pipefail’ option to set will cause a pipeline to return a
failure status if any command fails.

• Bash has the time reserved word and command timing (see Section 3.2.2 [Pipelines],
page 8). The display of the timing statistics may be controlled with the TIMEFORMAT

variable.

• Bash implements the for ((expr1 ; expr2 ; expr3)) arithmetic for command, sim-
ilar to the C language (see Section 3.2.4.1 [Looping Constructs], page 10).

• Bash includes the select compound command, which allows the generation of simple
menus (see Section 3.2.4.2 [Conditional Constructs], page 11).

Appendix B: Major Differences From The Bourne Shell 155

• Bash includes the [[compound command, which makes conditional testing part of
the shell grammar (see Section 3.2.4.2 [Conditional Constructs], page 11), including
optional regular expression matching.

• Bash provides optional case-insensitive matching for the case and [[constructs.

• Bash includes brace expansion (see Section 3.5.1 [Brace Expansion], page 22) and tilde
expansion (see Section 3.5.2 [Tilde Expansion], page 23).

• Bash implements command aliases and the alias and unalias builtins (see Section 6.6
[Aliases], page 92).

• Bash provides shell arithmetic, the ((compound command (see Section 3.2.4.2 [Con-
ditional Constructs], page 11), and arithmetic expansion (see Section 6.5 [Shell Arith-
metic], page 91).

• Variables present in the shell’s initial environment are automatically exported to child
processes. The Bourne shell does not normally do this unless the variables are explicitly
marked using the export command.

• Bash supports the ‘+=’ assignment operator, which appends to the value of the variable
named on the left hand side.

• Bash includes the posix pattern removal ‘%’, ‘#’, ‘%%’ and ‘##’ expansions to remove
leading or trailing substrings from variable values (see Section 3.5.3 [Shell Parameter
Expansion], page 24).

• The expansion ${#xx}, which returns the length of ${xx}, is supported (see
Section 3.5.3 [Shell Parameter Expansion], page 24).

• The expansion ${var:offset[:length]}, which expands to the substring of var’s value
of length length, beginning at offset, is present (see Section 3.5.3 [Shell Parameter
Expansion], page 24).

• The expansion ${var/[/]pattern[/replacement]}, which matches pattern and replaces
it with replacement in the value of var, is available (see Section 3.5.3 [Shell Parameter
Expansion], page 24).

• The expansion ${!prefix*} expansion, which expands to the names of all shell vari-
ables whose names begin with prefix, is available (see Section 3.5.3 [Shell Parameter
Expansion], page 24).

• Bash has indirect variable expansion using ${!word} (see Section 3.5.3 [Shell Parameter
Expansion], page 24).

• Bash can expand positional parameters beyond $9 using ${num}.

• The posix $() form of command substitution is implemented (see Section 3.5.4 [Com-
mand Substitution], page 30), and preferred to the Bourne shell’s ‘‘ (which is also
implemented for backwards compatibility).

• Bash has process substitution (see Section 3.5.6 [Process Substitution], page 30).

• Bash automatically assigns variables that provide information about the current
user (UID, EUID, and GROUPS), the current host (HOSTTYPE, OSTYPE, MACHTYPE, and
HOSTNAME), and the instance of Bash that is running (BASH, BASH_VERSION, and
BASH_VERSINFO). See Section 5.2 [Bash Variables], page 72, for details.

• The IFS variable is used to split only the results of expansion, not all words (see
Section 3.5.7 [Word Splitting], page 31). This closes a longstanding shell security hole.

Appendix B: Major Differences From The Bourne Shell 156

• The filename expansion bracket expression code uses ‘!’ and ‘^’ to negate the set of
characters between the brackets. The Bourne shell uses only ‘!’.

• Bash implements the full set of posix filename expansion operators, including char-
acter classes, equivalence classes, and collating symbols (see Section 3.5.8 [Filename
Expansion], page 31).

• Bash implements extended pattern matching features when the extglob shell option
is enabled (see Section 3.5.8.1 [Pattern Matching], page 32).

• It is possible to have a variable and a function with the same name; sh does not separate
the two name spaces.

• Bash functions are permitted to have local variables using the local builtin, and thus
useful recursive functions may be written (see Section 4.2 [Bash Builtins], page 50).

• Variable assignments preceding commands affect only that command, even builtins and
functions (see Section 3.7.4 [Environment], page 39). In sh, all variable assignments
preceding commands are global unless the command is executed from the file system.

• Bash performs filename expansion on filenames specified as operands to input and
output redirection operators (see Section 3.6 [Redirections], page 33).

• Bash contains the ‘<>’ redirection operator, allowing a file to be opened for both read-
ing and writing, and the ‘&>’ redirection operator, for directing standard output and
standard error to the same file (see Section 3.6 [Redirections], page 33).

• Bash includes the ‘<<<’ redirection operator, allowing a string to be used as the standard
input to a command.

• Bash implements the ‘[n]<&word’ and ‘[n]>&word’ redirection operators, which move
one file descriptor to another.

• Bash treats a number of filenames specially when they are used in redirection operators
(see Section 3.6 [Redirections], page 33).

• Bash can open network connections to arbitrary machines and services with the redi-
rection operators (see Section 3.6 [Redirections], page 33).

• The noclobber option is available to avoid overwriting existing files with output redi-
rection (see Section 4.3.1 [The Set Builtin], page 61). The ‘>|’ redirection operator
may be used to override noclobber.

• The Bash cd and pwd builtins (see Section 4.1 [Bourne Shell Builtins], page 43) each
take -L and -P options to switch between logical and physical modes.

• Bash allows a function to override a builtin with the same name, and provides access to
that builtin’s functionality within the function via the builtin and command builtins
(see Section 4.2 [Bash Builtins], page 50).

• The command builtin allows selective disabling of functions when command lookup is
performed (see Section 4.2 [Bash Builtins], page 50).

• Individual builtins may be enabled or disabled using the enable builtin (see Section 4.2
[Bash Builtins], page 50).

• The Bash exec builtin takes additional options that allow users to control the contents
of the environment passed to the executed command, and what the zeroth argument
to the command is to be (see Section 4.1 [Bourne Shell Builtins], page 43).

• Shell functions may be exported to children via the environment using export -f (see
Section 3.3 [Shell Functions], page 17).

Appendix B: Major Differences From The Bourne Shell 157

• The Bash export, readonly, and declare builtins can take a -f option to act on
shell functions, a -p option to display variables with various attributes set in a format
that can be used as shell input, a -n option to remove various variable attributes, and
‘name=value’ arguments to set variable attributes and values simultaneously.

• The Bash hash builtin allows a name to be associated with an arbitrary filename,
even when that filename cannot be found by searching the $PATH, using ‘hash -p’ (see
Section 4.1 [Bourne Shell Builtins], page 43).

• Bash includes a help builtin for quick reference to shell facilities (see Section 4.2 [Bash
Builtins], page 50).

• The printf builtin is available to display formatted output (see Section 4.2 [Bash
Builtins], page 50).

• The Bash read builtin (see Section 4.2 [Bash Builtins], page 50) will read a line ending
in ‘\’ with the -r option, and will use the REPLY variable as a default if no non-option
arguments are supplied. The Bash read builtin also accepts a prompt string with the
-p option and will use Readline to obtain the line when given the -e option. The read
builtin also has additional options to control input: the -s option will turn off echoing
of input characters as they are read, the -t option will allow read to time out if input
does not arrive within a specified number of seconds, the -n option will allow reading
only a specified number of characters rather than a full line, and the -d option will
read until a particular character rather than newline.

• The return builtin may be used to abort execution of scripts executed with the . or
source builtins (see Section 4.1 [Bourne Shell Builtins], page 43).

• Bash includes the shopt builtin, for finer control of shell optional capabilities (see
Section 4.3.2 [The Shopt Builtin], page 65), and allows these options to be set and
unset at shell invocation (see Section 6.1 [Invoking Bash], page 84).

• Bash has much more optional behavior controllable with the set builtin (see
Section 4.3.1 [The Set Builtin], page 61).

• The ‘-x’ (xtrace) option displays commands other than simple commands when per-
forming an execution trace (see Section 4.3.1 [The Set Builtin], page 61).

• The test builtin (see Section 4.1 [Bourne Shell Builtins], page 43) is slightly different,
as it implements the posix algorithm, which specifies the behavior based on the number
of arguments.

• Bash includes the caller builtin, which displays the context of any active subroutine
call (a shell function or a script executed with the . or source builtins). This supports
the bash debugger.

• The trap builtin (see Section 4.1 [Bourne Shell Builtins], page 43) allows a DEBUG

pseudo-signal specification, similar to EXIT. Commands specified with a DEBUG trap
are executed before every simple command, for command, case command, select
command, every arithmetic for command, and before the first command executes in
a shell function. The DEBUG trap is not inherited by shell functions unless the function
has been given the trace attribute or the functrace option has been enabled using
the shopt builtin. The extdebug shell option has additional effects on the DEBUG trap.

The trap builtin (see Section 4.1 [Bourne Shell Builtins], page 43) allows an ERR pseudo-
signal specification, similar to EXIT and DEBUG. Commands specified with an ERR trap

Appendix B: Major Differences From The Bourne Shell 158

are executed after a simple command fails, with a few exceptions. The ERR trap is
not inherited by shell functions unless the -o errtrace option to the set builtin is
enabled.

The trap builtin (see Section 4.1 [Bourne Shell Builtins], page 43) allows a RETURN

pseudo-signal specification, similar to EXIT and DEBUG. Commands specified with an
RETURN trap are executed before execution resumes after a shell function or a shell
script executed with . or source returns. The RETURN trap is not inherited by shell
functions unless the function has been given the trace attribute or the functrace

option has been enabled using the shopt builtin.

• The Bash type builtin is more extensive and gives more information about the names
it finds (see Section 4.2 [Bash Builtins], page 50).

• The Bash umask builtin permits a -p option to cause the output to be displayed in the
form of a umask command that may be reused as input (see Section 4.1 [Bourne Shell
Builtins], page 43).

• Bash implements a csh-like directory stack, and provides the pushd, popd, and dirs

builtins to manipulate it (see Section 6.8 [The Directory Stack], page 95). Bash also
makes the directory stack visible as the value of the DIRSTACK shell variable.

• Bash interprets special backslash-escaped characters in the prompt strings when inter-
active (see Section 6.9 [Controlling the Prompt], page 96).

• The Bash restricted mode is more useful (see Section 6.10 [The Restricted Shell],
page 97); the SVR4.2 shell restricted mode is too limited.

• The disown builtin can remove a job from the internal shell job table (see Section 7.2
[Job Control Builtins], page 103) or suppress the sending of SIGHUP to a job when the
shell exits as the result of a SIGHUP.

• Bash includes a number of features to support a separate debugger for shell scripts.

• The SVR4.2 shell has two privilege-related builtins (mldmode and priv) not present in
Bash.

• Bash does not have the stop or newgrp builtins.

• Bash does not use the SHACCT variable or perform shell accounting.

• The SVR4.2 sh uses a TIMEOUT variable like Bash uses TMOUT.

More features unique to Bash may be found in Chapter 6 [Bash Features], page 84.

B.1 Implementation Differences From The SVR4.2 Shell

Since Bash is a completely new implementation, it does not suffer from many of the limi-
tations of the SVR4.2 shell. For instance:

• Bash does not fork a subshell when redirecting into or out of a shell control structure
such as an if or while statement.

• Bash does not allow unbalanced quotes. The SVR4.2 shell will silently insert a needed
closing quote at EOF under certain circumstances. This can be the cause of some hard-
to-find errors.

• The SVR4.2 shell uses a baroque memory management scheme based on trapping
SIGSEGV. If the shell is started from a process with SIGSEGV blocked (e.g., by using
the system() C library function call), it misbehaves badly.

Appendix B: Major Differences From The Bourne Shell 159

• In a questionable attempt at security, the SVR4.2 shell, when invoked without the -p

option, will alter its real and effective uid and gid if they are less than some magic
threshold value, commonly 100. This can lead to unexpected results.

• The SVR4.2 shell does not allow users to trap SIGSEGV, SIGALRM, or SIGCHLD.

• The SVR4.2 shell does not allow the IFS, MAILCHECK, PATH, PS1, or PS2 variables to
be unset.

• The SVR4.2 shell treats ‘^’ as the undocumented equivalent of ‘|’.

• Bash allows multiple option arguments when it is invoked (-x -v); the SVR4.2 shell
allows only one option argument (-xv). In fact, some versions of the shell dump core
if the second argument begins with a ‘-’.

• The SVR4.2 shell exits a script if any builtin fails; Bash exits a script only if one of the
posix special builtins fails, and only for certain failures, as enumerated in the posix
standard.

• The SVR4.2 shell behaves differently when invoked as jsh (it turns on job control).

160

Appendix C GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix C: GNU Free Documentation License 161

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix C: GNU Free Documentation License 162

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix C: GNU Free Documentation License 163

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix C: GNU Free Documentation License 164

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix C: GNU Free Documentation License 165

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix C: GNU Free Documentation License 166

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix C: GNU Free Documentation License 167

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

168

Appendix D Indexes

D.1 Index of Shell Builtin Commands

.

. 43

:
: . 43

[
[. 47

A
alias . 50

B
bg . 103
bind . 50
break . 44
builtin . 51

C
caller . 52
cd . 44
command . 52
compgen . 133
complete . 133
compopt . 136
continue . 44

D
declare . 52
dirs . 95
disown . 104

E
echo . 54
enable . 54
eval . 44
exec . 45
exit . 45
export . 45

F
fc . 141
fg . 103

G
getopts . 45

H
hash . 46
help . 55
history . 141

J
jobs . 103

K
kill . 104

L
let . 55
local . 55
logout . 56

M
mapfile . 56

P
popd . 95
printf . 56
pushd . 96
pwd . 46

R
read . 57
readarray . 59
readonly . 46
return . 47

S
set . 61
shift . 47
shopt . 65
source . 59
suspend . 105

Appendix D: Indexes 169

T
test . 47
times . 49
trap . 49
type . 59
typeset . 59

U
ulimit . 59
umask . 49
unalias . 61
unset . 50

W
wait . 104

D.2 Index of Shell Reserved Words

!
! . 8

[
[[. 12

]
]] . 12

{
{ . 15

}
} . 15

C
case . 11

D
do . 10
done . 10

E
elif . 11
else . 11
esac . 11

F
fi . 11
for . 10
function . 17

I
if . 11
in . 11

S
select . 12

T
then . 11
time . 8

U
until . 10

W
while . 10

Appendix D: Indexes 170

D.3 Parameter and Variable Index

!
! . 21

#
. 21

$
$. 21
$! . 21
$# . 21
$$. 21
$* . 21
$- . 21
$? . 21
$@ . 21
$_ . 21
$0 . 21

*
* . 21

–
- . 21

?
? . 21

@
@ . 21

_ . 21

0
0 . 21

A
auto_resume . 105

B
BASH . 72
BASH_ALIASES . 73
BASH_ARGC . 73
BASH_ARGV . 73
BASH_ARGV0 . 73
BASH_CMDS . 73
BASH_COMMAND . 74
BASH_COMPAT . 74
BASH_ENV . 74
BASH_EXECUTION_STRING . 74
BASH_LINENO . 74
BASH_LOADABLES_PATH . 74
BASH_REMATCH . 74
BASH_SOURCE . 74
BASH_SUBSHELL . 75
BASH_VERSINFO . 75
BASH_VERSION . 75
BASH_XTRACEFD . 75
BASHOPTS . 73
BASHPID . 73
bell-style . 110
bind-tty-special-chars . 110
blink-matching-paren . 110

C
CDPATH . 72
CHILD_MAX . 75
colored-completion-prefix 110
colored-stats . 110
COLUMNS . 75
comment-begin . 110
COMP_CWORD . 76
COMP_KEY . 76
COMP_LINE . 76
COMP_POINT . 76
COMP_TYPE . 76
COMP_WORDBREAKS . 76
COMP_WORDS . 76
completion-display-width 110
completion-ignore-case . 111
completion-map-case . 111
completion-prefix-display-length 111
completion-query-items . 111
COMPREPLY . 76
convert-meta . 111
COPROC . 76

Appendix D: Indexes 171

D
DIRSTACK . 76
disable-completion . 111

E
echo-control-characters . 111
editing-mode . 111
emacs-mode-string . 111
EMACS . 77
enable-bracketed-paste . 112
enable-keypad . 112
ENV . 77
EPOCHREALTIME . 77
EPOCHSECONDS . 77
EUID . 77
EXECIGNORE . 77
expand-tilde . 112

F
FCEDIT . 77
FIGNORE . 77
FUNCNAME . 77
FUNCNEST . 78

G
GLOBIGNORE . 78
GROUPS . 78

H
histchars . 78
HISTCMD . 78
HISTCONTROL . 78
HISTFILE . 78
HISTFILESIZE . 79
HISTIGNORE . 79
history-preserve-point . 112
history-size . 112
HISTSIZE . 79
HISTTIMEFORMAT . 79
HOME . 72
horizontal-scroll-mode . 112
HOSTFILE . 79
HOSTNAME . 79
HOSTTYPE . 79

I
IFS . 72
IGNOREEOF . 80
input-meta . 112
INPUTRC . 80
isearch-terminators . 113

K
keymap . 113

L
LANG . 80
LC_ALL . 80
LC_COLLATE . 80
LC_CTYPE . 80
LC_MESSAGES . 7, 80
LC_NUMERIC . 80
LC_TIME . 80
LINENO . 80
LINES . 80

M
MACHTYPE . 80
MAIL . 72
MAILCHECK . 80
MAILPATH . 72
MAPFILE . 80
mark-modified-lines . 113
mark-symlinked-directories 113
match-hidden-files . 113
menu-complete-display-prefix 114
meta-flag . 112

O
OLDPWD . 81
OPTARG . 72
OPTERR . 81
OPTIND . 72
OSTYPE . 81
output-meta . 114

Appendix D: Indexes 172

P
page-completions . 114
PATH . 72
PIPESTATUS . 81
POSIXLY_CORRECT . 81
PPID . 81
PROMPT_COMMAND . 81
PROMPT_DIRTRIM . 81
PS0 . 81
PS1 . 72
PS2 . 72
PS3 . 81
PS4 . 81
PWD . 81

R
RANDOM . 81
READLINE_LINE . 81
READLINE_POINT . 82
REPLY . 82
revert-all-at-newline . 114

S
SECONDS . 82
SHELL . 82
SHELLOPTS . 82
SHLVL . 82
show-all-if-ambiguous . 114
show-all-if-unmodified . 114

show-mode-in-prompt . 114
skip-completed-text . 114

T
TEXTDOMAIN . 7
TEXTDOMAINDIR . 7
TIMEFORMAT . 82
TMOUT . 83
TMPDIR . 83

U
UID . 83

V
vi-cmd-mode-string . 115
vi-ins-mode-string . 115
visible-stats . 115

D.4 Function Index

A
abort (C-g) . 128
accept-line (Newline or Return) 122
alias-expand-line () . 130

B
backward-char (C-b) . 121
backward-delete-char (Rubout) 124
backward-kill-line (C-x Rubout) 125
backward-kill-word (M-DEL) 125
backward-word (M-b) . 121
beginning-of-history (M-<) 122

beginning-of-line (C-a) . 121
bracketed-paste-begin () 124

C
call-last-kbd-macro (C-x e) 128
capitalize-word (M-c) . 124
character-search (C-]) . 129
character-search-backward (M-C-]) 129
clear-screen (C-l) . 122
complete (TAB) . 126
complete-command (M-!) . 127
complete-filename (M-/) . 127
complete-hostname (M-@) . 127

Appendix D: Indexes 173

complete-into-braces (M-{) 128
complete-username (M-~) . 127
complete-variable (M-$) . 127
copy-backward-word () . 125
copy-forward-word () . 126
copy-region-as-kill () . 125

D
dabbrev-expand () . 128
delete-char (C-d) . 123
delete-char-or-list () . 127
delete-horizontal-space () 125
digit-argument (M-0, M-1, ... M--) 126
display-shell-version (C-x C-v) 130
do-lowercase-version (M-A,

M-B, M-x, ...) . 128
downcase-word (M-l) . 124
dump-functions () . 129
dump-macros () . 129
dump-variables () . 129
dynamic-complete-history (M-TAB) 127

E
edit-and-execute-command (C-x C-e) 130
end-kbd-macro (C-x)) . 128
end-of-file (usually C-d) 123
end-of-history (M->) . 122
end-of-line (C-e) . 121
exchange-point-and-mark (C-x C-x) 129

F
forward-backward-delete-char () 124
forward-char (C-f) . 121
forward-search-history (C-s) 122
forward-word (M-f) . 121

G
glob-complete-word (M-g) 130
glob-expand-word (C-x *) 130
glob-list-expansions (C-x g) 130

H
history-and-alias-expand-line () 130
history-expand-line (M-^) 130
history-search-backward () 123
history-search-forward () 122
history-substring-search-backward () 123
history-substring-search-forward () 123

I
insert-comment (M-#) . 129
insert-completions (M-*) 126
insert-last-argument (M-. or M-_) 130

K
kill-line (C-k) . 125
kill-region () . 125
kill-whole-line () . 125
kill-word (M-d) . 125

M
magic-space () . 130
menu-complete () . 126
menu-complete-backward () 127

N
next-history (C-n) . 122
next-screen-line () . 122
non-incremental-forward-

search-history (M-n) . 122
non-incremental-reverse-

search-history (M-p) . 122

O
operate-and-get-next (C-o) 130
overwrite-mode () . 124

Appendix D: Indexes 174

P
possible-command-completions (C-x !) 127
possible-completions (M-?) 126
possible-filename-completions (C-x /) 127
possible-hostname-completions (C-x @) 127
possible-username-completions (C-x ~) 127
possible-variable-completions (C-x $) 127
prefix-meta (ESC) . 128
previous-history (C-p) . 122
previous-screen-line () . 121
print-last-kbd-macro () . 128

Q
quoted-insert (C-q or C-v) 124

R
re-read-init-file (C-x C-r) 128
redraw-current-line () . 122
reverse-search-history (C-r) 122
revert-line (M-r) . 128

S
self-insert (a, b, A, 1, !, ...) 124
set-mark (C-@) . 129
shell-backward-kill-word () 125
shell-backward-word () . 121
shell-expand-line (M-C-e) 130
shell-forward-word () . 121
shell-kill-word () . 125

skip-csi-sequence () . 129
start-kbd-macro (C-x () . 128

T

tilde-expand (M-&) . 128

transpose-chars (C-t) . 124
transpose-words (M-t) . 124

U

undo (C-_ or C-x C-u) . 128

universal-argument () . 126

unix-filename-rubout () . 125

unix-line-discard (C-u) . 125

unix-word-rubout (C-w) . 125
upcase-word (M-u) . 124

Y

yank (C-y) . 126

yank-last-arg (M-. or M-_) 123

yank-nth-arg (M-C-y) . 123
yank-pop (M-y) . 126

D.5 Concept Index

A
alias expansion . 92
arithmetic evaluation . 91
arithmetic expansion . 30
arithmetic, shell . 91
arrays . 93

B
background . 102
Bash configuration . 145
Bash installation . 145
Bourne shell . 5
brace expansion . 22
builtin . 3

Appendix D: Indexes 175

C
command editing . 107
command execution . 38
command expansion . 37
command history . 140
command search . 38
command substitution . 30
command timing . 8
commands, compound . 9
commands, conditional . 11
commands, grouping . 14
commands, lists . 9
commands, looping . 10
commands, pipelines . 8
commands, shell . 8
commands, simple . 8
comments, shell . 7
completion builtins . 133
configuration . 145
control operator . 3
coprocess . 15

D
directory stack . 95

E
editing command lines . 107
environment . 39
evaluation, arithmetic . 91
event designators . 143
execution environment . 38
exit status . 3, 40
expansion . 22
expansion, arithmetic . 30
expansion, brace . 22
expansion, filename . 31
expansion, parameter . 24
expansion, pathname . 31
expansion, tilde . 23
expressions, arithmetic . 91
expressions, conditional . 89

F
field . 3
filename . 3
filename expansion . 31
foreground . 102
functions, shell . 17

H
history builtins . 140
history events . 143
history expansion . 142
history list . 140
History, how to use . 139

I
identifier . 3
initialization file, readline . 109
installation . 145
interaction, readline . 106
interactive shell . 86, 87
internationalization . 7

J
job . 3
job control . 3, 102

K
kill ring . 108
killing text . 108

L
localization . 7
login shell . 86

M
matching, pattern . 32
metacharacter . 3

Appendix D: Indexes 176

N
name . 3
native languages . 7
notation, readline . 107

O
operator, shell . 3

P
parameter expansion . 24
parameters . 19
parameters, positional . 20
parameters, special . 21
pathname expansion . 31
pattern matching . 32
pipeline . 8
POSIX . 3
POSIX Mode . 98
process group . 3
process group ID . 3
process substitution . 30
programmable completion . 131
prompting . 96

Q
quoting . 6
quoting, ANSI . 6

R
Readline, how to use . 105
redirection . 33
reserved word . 3
restricted shell . 97
return status . 4

S
shell arithmetic . 91
shell function . 17
shell script . 41
shell variable . 19
shell, interactive . 87
signal . 4
signal handling . 40
special builtin . 4, 71
startup files . 86
suspending jobs . 102

T
tilde expansion . 23
token . 4
translation, native languages . 7

V
variable, shell . 19
variables, readline . 110

W
word . 4
word splitting . 31

Y
yanking text . 108

	Introduction
	What is Bash?
	What is a shell?

	Definitions
	Basic Shell Features
	Shell Syntax
	Shell Operation
	Quoting
	Escape Character
	Single Quotes
	Double Quotes
	ANSI-C Quoting
	Locale-Specific Translation

	Comments

	Shell Commands
	Simple Commands
	Pipelines
	Lists of Commands
	Compound Commands
	Looping Constructs
	Conditional Constructs
	Grouping Commands

	Coprocesses
	GNU Parallel

	Shell Functions
	Shell Parameters
	Positional Parameters
	Special Parameters

	Shell Expansions
	Brace Expansion
	Tilde Expansion
	Shell Parameter Expansion
	Command Substitution
	Arithmetic Expansion
	Process Substitution
	Word Splitting
	Filename Expansion
	Pattern Matching

	Quote Removal

	Redirections
	Redirecting Input
	Redirecting Output
	Appending Redirected Output
	Redirecting Standard Output and Standard Error
	Appending Standard Output and Standard Error
	Here Documents
	Here Strings
	Duplicating File Descriptors
	Moving File Descriptors
	Opening File Descriptors for Reading and Writing

	Executing Commands
	Simple Command Expansion
	Command Search and Execution
	Command Execution Environment
	Environment
	Exit Status
	Signals

	Shell Scripts

	Shell Builtin Commands
	Bourne Shell Builtins
	Bash Builtin Commands
	Modifying Shell Behavior
	The Set Builtin
	The Shopt Builtin

	Special Builtins

	Shell Variables
	Bourne Shell Variables
	Bash Variables

	Bash Features
	Invoking Bash
	Bash Startup Files
	Interactive Shells
	What is an Interactive Shell?
	Is this Shell Interactive?
	Interactive Shell Behavior

	Bash Conditional Expressions
	Shell Arithmetic
	Aliases
	Arrays
	The Directory Stack
	Directory Stack Builtins

	Controlling the Prompt
	The Restricted Shell
	Bash POSIX Mode

	Job Control
	Job Control Basics
	Job Control Builtins
	Job Control Variables

	Command Line Editing
	Introduction to Line Editing
	Readline Interaction
	Readline Bare Essentials
	Readline Movement Commands
	Readline Killing Commands
	Readline Arguments
	Searching for Commands in the History

	Readline Init File
	Readline Init File Syntax
	Conditional Init Constructs
	Sample Init File

	Bindable Readline Commands
	Commands For Moving
	Commands For Manipulating The History
	Commands For Changing Text
	Killing And Yanking
	Specifying Numeric Arguments
	Letting Readline Type For You
	Keyboard Macros
	Some Miscellaneous Commands

	Readline vi Mode
	Programmable Completion
	Programmable Completion Builtins
	A Programmable Completion Example

	Using History Interactively
	Bash History Facilities
	Bash History Builtins
	History Expansion
	Event Designators
	Word Designators
	Modifiers

	Installing Bash
	Basic Installation
	Compilers and Options
	Compiling For Multiple Architectures
	Installation Names
	Specifying the System Type
	Sharing Defaults
	Operation Controls
	Optional Features

	Reporting Bugs
	Major Differences From The Bourne Shell
	Implementation Differences From The SVR4.2 Shell

	GNU Free Documentation License
	Indexes
	Index of Shell Builtin Commands
	Index of Shell Reserved Words
	Parameter and Variable Index
	Function Index
	Concept Index

